欢迎来到天天文库
浏览记录
ID:42900662
大小:29.50 KB
页数:4页
时间:2019-09-23
《《提公因式法分解因式》》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《提公因式法分解因式》教学设计赵州镇中学张丽辉教学目标 1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系. 2.使学生理解提公因式法并能熟练地运用提公因式法分解因式. 3.通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.教学重点及难点教学重点:因式分解的概念及提公因式法.教学难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系.教学过程设计:一、复习提问 乘法对加法的分配律.二、新课1.新课引入:用类比的方法引入课题. 在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,
2、把15分解成3×5,把42分解成2×3×7. 在前面我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法.2.因式分解的概念:请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果.(老师按学生所说在黑板写出几个.) 如:m(a+b+c)=ma+mb+mc 2xy(x-2xy+1)=2x2y-4x²y²+2xy (a+b)(a-b)=a2-b2 (a+b)(m+n)=am+an+bm+bn (x-5)(2-x)=-x2+7x-10等等.
3、 再请学生观察它们有什么共同的特点? 特点:左边,整式×整式;右边,是多项式. 可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解. 定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 如:因式分解:ma+mb+mc=m(a+b+c). 整式乘法:m(a+b+c)=ma+mb+mc. 让学生说出因式分解与整式乘法的联系与区别. 联系:同样是由几个相同的整式组成的等式. 区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法.两者是方向相反的恒
4、等变形,二者是一个式子的不同表现形式,一个是多项式的表现形式,一个是两个或几个因式积的表现形式. 例1下列各式从左到右哪些是因式分解?(投影) (1)x2-x=x(x-1)(√) (2)a(a-b)=a2-ab(×) (3)(a+3)(a-3)=a2-9(×) (4)a2-2a+1=a(a-2)+1(×) (5)x2-4x+4=(x-2)2(√) 下面我们学习几种常见的因式分解方法.3.提公因式法: 我们看多项式:ma+mb+mc 请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式. 注意:公因式是各项都
5、含有的公共的因式. 又如:a是多项式a2-a各项的公因式. ab是多项式5a2b-ab2各项的公因式. 2mn是多项式4m2np-2mn2q各项的公因式. 根据乘法的分配律,可得 m(a+b+c)=ma+mb+mc, 逆变形,便得到多项式ma+mb+mc的因式分解形式 ma+mb+mc=m(a+b+c). 这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式 ma+mb+mc写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法. 定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多 项式写成因
6、式乘积的形式,这种分解因式的方法叫做提公因式法. 显然,由定义可知,提公因式法的关键是如何正确地寻找公因式.让学生观察上面的公因式的特点,找出确定公因式的万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母的指数取次数例2指出下列各多项式中各项的公因式: (1)ax+ay+a(a) (2)3mx-6mx2(3mx) (3)4a2+10ah(2a) (4)x2y+xy2(xy) (5)12xyz-9x2y2(3xy) 例3把8a3b2-12ab3c分解因式. 分析:分两步:第一步,找出公因式;第二步,提公因式
7、. 先引导学生按确定公因式的方法找出多项式的公因式4ab2. 解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a2-3bc). 说明: (1)应特别强调确定公因式的两个条件以免漏取. (2)开始讲提公因式法时,最好把公因式单独写出.①以显提醒;③强调提公因式;③强调因式分解. 例4把3x2-6xy+x分解因式. 分析:先引导学生找出公因式x,强调多项式中x=x·1. 解:3x2-6xy+x
此文档下载收益归作者所有