最短路径问题.4课题学习最短路径问题

最短路径问题.4课题学习最短路径问题

ID:42884509

大小:3.13 MB

页数:4页

时间:2019-09-22

最短路径问题.4课题学习最短路径问题_第1页
最短路径问题.4课题学习最短路径问题_第2页
最短路径问题.4课题学习最短路径问题_第3页
最短路径问题.4课题学习最短路径问题_第4页
资源描述:

《最短路径问题.4课题学习最短路径问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、13.4 课题学习 最短路径问题如皋郭元中学朱勇华一、教学设计理念最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变化进行研究。本节课以数学史中的两个经典问题——“将军饮马”“造桥选址”为载体展开对“最短路径问题”的课题研究,让学生经历将实际问题转化为数学问题,利用轴对称、平移等变化再把数学问题转化为线段和最小问题,并运用“两点之间线段最短”(或“三角形两边之和大于第三边”)解决问题,体现了数学化的过程和转化思想

2、。最短路径问题从本质上说是最值问题,作为初中生,此前很少在几何中接触最值问题,解决此类问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手.解答“当点A、B在直线l的同侧时,如何在直线l上找到点C,使AC与CB的和最小”,需要将其转化为“在直线l异侧两点的线段和最小值问题”,为什么需要这样转化、怎样通过轴对称、平移变化实现转化,一些学生在理解和操作上存在困难.在证明作法的合理性时,需要在直线上任取点(与所求作的点不重合),证明所连线段和大于所求作的线段和,这种思路、方法,一些学生想不到.所以在课堂上特别

3、对这几个问题进行了针对性的设计。二、教学对象分析八年级的学生已经学习研究过一些“两点之间,线段最短”、“垂线段最短”等问题。一直以来,学生对多媒体环境下的几何探究都十分感兴趣,有较强的好奇心,在学习上有较强的求知欲望,学习投入程度大。他们观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。学生在数学问题的提出和解决上有一定的方法,但不够深入和全面,需要教师的引导和帮助,学生本身具有一定的探究精神和合作意识,能在亲身的

4、经历体验中获取一定的数学新知识,但在数学的说理上还不规范,几何演绎推理能力有待加强。(1)最短路径问题从本质上说是最值问题,作为初中生,此前很少在几何中接触最值问题,解决此类问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。(2)解答“当点A、B在直线l的同侧时,如何在直线l上找到点C,使AC与CB的和最小”,需要将其转化为“在直线l异侧两点的线段和最小值问题”,为什么需要这样转化、怎样通过轴对称、平移变化实现转化,一些学生在理解和操作上存在困难。(3)在证明作法的合理性时,需要在直线上任取点(与所

5、求作的点不重合)。证明所连线段和大于所求作的线段和,这种思路、方法,一些学生会想不到。三、教学目标1、了解解决最短路径问题的基本策略和基本原理。2、能将实际问题中的“地点”“河”“桥”等抽象为数学中的“点”“线”,使实际问题数学化。3、能运用轴对称、平移变化解决简单的最短路径问题,体会几何变化在解决最值问题中的重要作用。4、在探索最短路径的过程中,感悟、运用转化思想。进一步培养好奇心和探究心理,更进一步体会到数学知识在生活中的应用。四,教学重点将实际问题转化成数学问题,运用轴对称平移解决生活中路径最短的问题,确定出最短路径的方法。

6、   五,教学难点:探索发现“最短路径”的方案,确定最短路径的作图及原理。六、教学实施1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短

7、?你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小. 分析:求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条

8、直线上,然后用“两点之间线段最短”解决问题.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。