欢迎来到天天文库
浏览记录
ID:1442049
大小:827.00 KB
页数:11页
时间:2017-11-11
《课题学习:最短路径问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、PPT模板下载:www.1ppt.com/moban/行业PPT模板:www.1ppt.com/hangye/节日PPT模板:www.1ppt.com/jieri/PPT素材下载:www.1ppt.com/sucai/PPT背景图片:www.1ppt.com/beijing/PPT图表下载:www.1ppt.com/tubiao/优秀PPT下载:www.1ppt.com/xiazai/PPT教程:www.1ppt.com/powerpoint/Word教程:www.1ppt.com/word/Excel教程:www.1ppt.com/excel/资料下载:
2、www.1ppt.com/ziliao/PPT课件下载:www.1ppt.com/kejian/范文下载:www.1ppt.com/fanwen/13.4课题学习最短路径问题引言:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?①②③两点之间,线段最短(Ⅰ)两点在一条直线异侧已知:如图,A,B在
3、直线L的侧,在L上求一点P,使得PA+PB最小。A..BP思考:为什么这样就能得到最短距离呢?ABlB′P点P的位置即为所求.M作法:①作点B关于直线l的对称点B′.②连接AB′,交直线l于点P.(Ⅱ)两点在一条直线同侧已知:如图,A、B在直线L的同一侧,在L上求一点,使得PA+PB最小.为什么这样做就能得到最短距离呢?MA+MB′>PA+PB′即MA+MB′>PA+PB三角形任意两边之和大于第三边问题1:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边
4、l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?BAl精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?BAl将A,B两地抽象为两个点,将河l抽象为一条直线.B··Al运用新知练习 如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC上,再返回P处,请画出旅游船的最短路径.ABCPQ山河岸大桥运用新知基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC,这样问题就转化为“点
5、P,Q在直线BC的同侧,如何在BC上找到一点R,使PR与QR的和最小”.ABCPQ山河岸大桥问题2(造桥选址问题)如图,A和B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)问题2:分析布置作业教科书复习题13第15题.
此文档下载收益归作者所有