欢迎来到天天文库
浏览记录
ID:42781190
大小:546.30 KB
页数:19页
时间:2019-09-22
《宁夏六盘山高级中学高三上学期第二次月考文数试题含解析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、宁夏六盘山高级中学2016届高三上学期第二次月考文数试题一、选择题:本大题共12个小题,每小题5分,共60分.1、设全集U=R.A={xx(x-2)<0},B={xx2、0l}r{xO3、=—,则其共辘复数7在复平面上对应的点位于()1+zA、第一彖限B、第二彖限C、第三彖限D、第四彖限【答案】D【解析】试题分析:・.・z=—l=也二◎二丄+丄i,・•・:=丄一丄i对应的点(---)在第四彖限;故选1+z2222222D.考点:1・复数的运算;2•复数的几何意义.3、“2a>2"”是“log2a>log2方”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件【答案】B【解析】试题分析:・・・2">2",Hog2a>og2h^>a>h>0,.・."T>2h”是4、"log267>log2h"的必要不充分条件;故选B.考点:1.函数的单调性;2.充分条件与必要条件.4、下列函数中,在区间(-oo,0)上是减函数的是()h、y=-x2B、y=x2+xC、y=-y/-xI).x-l【答案】D【解析】试题分析:・・丁=1一云在区间(Y0®上是増函数,・・丁=疋+兀=(兀+£尸一匕在区间[^0-1]上是减14J2丿函数,在〈一;』)是増函数>•・•$=-匸^在区间(yo>0)上是増函数.==在(-8丄)上2x-lX—L是减函数,在区间(YO>0)上是腹函数;故选D・考点:5、基本函数的单调性.5、等比数列{色}的公比为2,且色如=16,则冬二()A、1B、-1C、±1D、±2【答案】C【解析】试题分析:设等比数列的首项为⑷,贝IJ冬如二才・212=16,即q二±2",贝9a5=±2~4x24=±1;故选C.考点:等比数列的通项公式.6、已知a=(l,2)J=(-2,4),且ka+b与方垂直,则"()A、10TB、10T20C、——3D、20T【答案】B【解析】试题分析:因为ka-^-b与乙垂直,所以(爲+初•方=庇易+厶2=0,即6£+20=0,解得k=;故选B.3考点:1.6、平面向量的坐标运算;2.平而向量垂直的判定.TTTT7、函数y=cosx——7、性、单调性、对称(兀兀、性,特殊点对应的特殊值)进行验证排除,如木题屮,先由函数y=lncosx--<%<-为122J偶函数、图彖关于y轴对称排除选项B、D,在通过特殊点兰的函数值排除选项C.4x<28、若实数满足不等式组ly<2,则z=x+2y的取值范围是()%+y>2A、[2,6]B、[2,5]C、[3,6]D、(3,5]【答案】A【解析】1Z1试题分析:将z=x+2y化为j=作出可行域和目标函数基准线尸-卜(如图所示),当直jLtjtfjtf线尸气兀+彳向右上方平移时,直线在J轴上的截距彳増大,即N8、増大;由图象,得当直线尸-£兀+彳过点022)时,z取到最大值6,当直线卩=_卜+彳过点虫(2』)时,z取得最小值2,即"无+2y的取值范围是[2,6];故选A.考点:简单的线性规划.9、若一个儿何体的三视图如图所示,则该儿何体的表面积为()C、-TC-->/3D、-TC-->/322【答案】C【解析】试题分析:由三视图,可知该儿何体是一个圆锥的一半(沿轴截面截得),其屮底面圆的半径为1,高为馅,母线长为2,其表而积是半圆面、轴截面和曲面的一半的面积之和,则该儿1112何体的表面积S=—7TXI2H—9、X2xV3H7TX2xI=—71+V3;故选C.2222考点:1.三视图;2.几何体的表面积.4110.若a>0,b>0,且惭数/(x)=4x3-ax2-2bx在兀=1处有极值,则一+—的最小值为abB、D、4A、-9【答案】c【解析】试题分析:因为函数f{x)=4j^-a^-2bx在兀=1处有极值,所臥f⑴=12兀—2°—25=0,即Tf41I,小/4L1..a4仪.5+43a4b_-.nn42+6=6,则一+-=-(«+&
2、0l}r{xO3、=—,则其共辘复数7在复平面上对应的点位于()1+zA、第一彖限B、第二彖限C、第三彖限D、第四彖限【答案】D【解析】试题分析:・.・z=—l=也二◎二丄+丄i,・•・:=丄一丄i对应的点(---)在第四彖限;故选1+z2222222D.考点:1・复数的运算;2•复数的几何意义.3、“2a>2"”是“log2a>log2方”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件【答案】B【解析】试题分析:・・・2">2",Hog2a>og2h^>a>h>0,.・."T>2h”是4、"log267>log2h"的必要不充分条件;故选B.考点:1.函数的单调性;2.充分条件与必要条件.4、下列函数中,在区间(-oo,0)上是减函数的是()h、y=-x2B、y=x2+xC、y=-y/-xI).x-l【答案】D【解析】试题分析:・・丁=1一云在区间(Y0®上是増函数,・・丁=疋+兀=(兀+£尸一匕在区间[^0-1]上是减14J2丿函数,在〈一;』)是増函数>•・•$=-匸^在区间(yo>0)上是増函数.==在(-8丄)上2x-lX—L是减函数,在区间(YO>0)上是腹函数;故选D・考点:5、基本函数的单调性.5、等比数列{色}的公比为2,且色如=16,则冬二()A、1B、-1C、±1D、±2【答案】C【解析】试题分析:设等比数列的首项为⑷,贝IJ冬如二才・212=16,即q二±2",贝9a5=±2~4x24=±1;故选C.考点:等比数列的通项公式.6、已知a=(l,2)J=(-2,4),且ka+b与方垂直,则"()A、10TB、10T20C、——3D、20T【答案】B【解析】试题分析:因为ka-^-b与乙垂直,所以(爲+初•方=庇易+厶2=0,即6£+20=0,解得k=;故选B.3考点:1.6、平面向量的坐标运算;2.平而向量垂直的判定.TTTT7、函数y=cosx——7、性、单调性、对称(兀兀、性,特殊点对应的特殊值)进行验证排除,如木题屮,先由函数y=lncosx--<%<-为122J偶函数、图彖关于y轴对称排除选项B、D,在通过特殊点兰的函数值排除选项C.4x<28、若实数满足不等式组ly<2,则z=x+2y的取值范围是()%+y>2A、[2,6]B、[2,5]C、[3,6]D、(3,5]【答案】A【解析】1Z1试题分析:将z=x+2y化为j=作出可行域和目标函数基准线尸-卜(如图所示),当直jLtjtfjtf线尸气兀+彳向右上方平移时,直线在J轴上的截距彳増大,即N8、増大;由图象,得当直线尸-£兀+彳过点022)时,z取到最大值6,当直线卩=_卜+彳过点虫(2』)时,z取得最小值2,即"无+2y的取值范围是[2,6];故选A.考点:简单的线性规划.9、若一个儿何体的三视图如图所示,则该儿何体的表面积为()C、-TC-->/3D、-TC-->/322【答案】C【解析】试题分析:由三视图,可知该儿何体是一个圆锥的一半(沿轴截面截得),其屮底面圆的半径为1,高为馅,母线长为2,其表而积是半圆面、轴截面和曲面的一半的面积之和,则该儿1112何体的表面积S=—7TXI2H—9、X2xV3H7TX2xI=—71+V3;故选C.2222考点:1.三视图;2.几何体的表面积.4110.若a>0,b>0,且惭数/(x)=4x3-ax2-2bx在兀=1处有极值,则一+—的最小值为abB、D、4A、-9【答案】c【解析】试题分析:因为函数f{x)=4j^-a^-2bx在兀=1处有极值,所臥f⑴=12兀—2°—25=0,即Tf41I,小/4L1..a4仪.5+43a4b_-.nn42+6=6,则一+-=-(«+&
3、=—,则其共辘复数7在复平面上对应的点位于()1+zA、第一彖限B、第二彖限C、第三彖限D、第四彖限【答案】D【解析】试题分析:・.・z=—l=也二◎二丄+丄i,・•・:=丄一丄i对应的点(---)在第四彖限;故选1+z2222222D.考点:1・复数的运算;2•复数的几何意义.3、“2a>2"”是“log2a>log2方”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件【答案】B【解析】试题分析:・・・2">2",Hog2a>og2h^>a>h>0,.・."T>2h”是
4、"log267>log2h"的必要不充分条件;故选B.考点:1.函数的单调性;2.充分条件与必要条件.4、下列函数中,在区间(-oo,0)上是减函数的是()h、y=-x2B、y=x2+xC、y=-y/-xI).x-l【答案】D【解析】试题分析:・・丁=1一云在区间(Y0®上是増函数,・・丁=疋+兀=(兀+£尸一匕在区间[^0-1]上是减14J2丿函数,在〈一;』)是増函数>•・•$=-匸^在区间(yo>0)上是増函数.==在(-8丄)上2x-lX—L是减函数,在区间(YO>0)上是腹函数;故选D・考点:
5、基本函数的单调性.5、等比数列{色}的公比为2,且色如=16,则冬二()A、1B、-1C、±1D、±2【答案】C【解析】试题分析:设等比数列的首项为⑷,贝IJ冬如二才・212=16,即q二±2",贝9a5=±2~4x24=±1;故选C.考点:等比数列的通项公式.6、已知a=(l,2)J=(-2,4),且ka+b与方垂直,则"()A、10TB、10T20C、——3D、20T【答案】B【解析】试题分析:因为ka-^-b与乙垂直,所以(爲+初•方=庇易+厶2=0,即6£+20=0,解得k=;故选B.3考点:1.
6、平面向量的坐标运算;2.平而向量垂直的判定.TTTT7、函数y=cosx——7、性、单调性、对称(兀兀、性,特殊点对应的特殊值)进行验证排除,如木题屮,先由函数y=lncosx--<%<-为122J偶函数、图彖关于y轴对称排除选项B、D,在通过特殊点兰的函数值排除选项C.4x<28、若实数满足不等式组ly<2,则z=x+2y的取值范围是()%+y>2A、[2,6]B、[2,5]C、[3,6]D、(3,5]【答案】A【解析】1Z1试题分析:将z=x+2y化为j=作出可行域和目标函数基准线尸-卜(如图所示),当直jLtjtfjtf线尸气兀+彳向右上方平移时,直线在J轴上的截距彳増大,即N8、増大;由图象,得当直线尸-£兀+彳过点022)时,z取到最大值6,当直线卩=_卜+彳过点虫(2』)时,z取得最小值2,即"无+2y的取值范围是[2,6];故选A.考点:简单的线性规划.9、若一个儿何体的三视图如图所示,则该儿何体的表面积为()C、-TC-->/3D、-TC-->/322【答案】C【解析】试题分析:由三视图,可知该儿何体是一个圆锥的一半(沿轴截面截得),其屮底面圆的半径为1,高为馅,母线长为2,其表而积是半圆面、轴截面和曲面的一半的面积之和,则该儿1112何体的表面积S=—7TXI2H—9、X2xV3H7TX2xI=—71+V3;故选C.2222考点:1.三视图;2.几何体的表面积.4110.若a>0,b>0,且惭数/(x)=4x3-ax2-2bx在兀=1处有极值,则一+—的最小值为abB、D、4A、-9【答案】c【解析】试题分析:因为函数f{x)=4j^-a^-2bx在兀=1处有极值,所臥f⑴=12兀—2°—25=0,即Tf41I,小/4L1..a4仪.5+43a4b_-.nn42+6=6,则一+-=-(«+&
7、性、单调性、对称(兀兀、性,特殊点对应的特殊值)进行验证排除,如木题屮,先由函数y=lncosx--<%<-为122J偶函数、图彖关于y轴对称排除选项B、D,在通过特殊点兰的函数值排除选项C.4x<28、若实数满足不等式组ly<2,则z=x+2y的取值范围是()%+y>2A、[2,6]B、[2,5]C、[3,6]D、(3,5]【答案】A【解析】1Z1试题分析:将z=x+2y化为j=作出可行域和目标函数基准线尸-卜(如图所示),当直jLtjtfjtf线尸气兀+彳向右上方平移时,直线在J轴上的截距彳増大,即N
8、増大;由图象,得当直线尸-£兀+彳过点022)时,z取到最大值6,当直线卩=_卜+彳过点虫(2』)时,z取得最小值2,即"无+2y的取值范围是[2,6];故选A.考点:简单的线性规划.9、若一个儿何体的三视图如图所示,则该儿何体的表面积为()C、-TC-->/3D、-TC-->/322【答案】C【解析】试题分析:由三视图,可知该儿何体是一个圆锥的一半(沿轴截面截得),其屮底面圆的半径为1,高为馅,母线长为2,其表而积是半圆面、轴截面和曲面的一半的面积之和,则该儿1112何体的表面积S=—7TXI2H—
9、X2xV3H7TX2xI=—71+V3;故选C.2222考点:1.三视图;2.几何体的表面积.4110.若a>0,b>0,且惭数/(x)=4x3-ax2-2bx在兀=1处有极值,则一+—的最小值为abB、D、4A、-9【答案】c【解析】试题分析:因为函数f{x)=4j^-a^-2bx在兀=1处有极值,所臥f⑴=12兀—2°—25=0,即Tf41I,小/4L1..a4仪.5+43a4b_-.nn42+6=6,则一+-=-(«+&
此文档下载收益归作者所有