2020版高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题教案理含解析新人教A版20190830353

2020版高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题教案理含解析新人教A版20190830353

ID:42696129

大小:2.48 MB

页数:13页

时间:2019-09-20

2020版高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题教案理含解析新人教A版20190830353_第1页
2020版高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题教案理含解析新人教A版20190830353_第2页
2020版高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题教案理含解析新人教A版20190830353_第3页
2020版高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题教案理含解析新人教A版20190830353_第4页
2020版高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题教案理含解析新人教A版20190830353_第5页
资源描述:

《2020版高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题教案理含解析新人教A版20190830353》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高考专题突破六 高考中的概率与统计问题题型一 离散型随机变量的期望与方差例1某品牌汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示.已知分9期付款的频率为0.2.4S店经销一辆该品牌的汽车,顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为1.5万元;分12期或15期付款,其利润为2万元.用η表示经销一辆汽车的利润.付款方式分3期分6期分9期分12期分15期频数4020a10b(1)求上表中的a,b值;(2)若以频率作为概率,求事件A“购买该品牌汽车的3位顾客中,至多有1位采用分9期付款”的概率P(A);(3)求η的分布列及期望E(η).

2、解 (1)由=0.2,得a=20.又40+20+a+10+b=100,所以b=10.(2)记分期付款的期数为ξ,ξ的可能取值是3,6,9,12,15.依题意,得P(ξ=3)==0.4,P(ξ=6)==0.2,P(ξ=9)=0.2,P(ξ=12)==0.1,P(ξ=15)==0.1.则“购买该品牌汽车的3位顾客中,至多有1位分9期付款”的概率为P(A)=0.83+C×0.2×(1-0.2)2=0.896.(3)由题意,可知ξ只能取3,6,9,12,15.而ξ=3时,η=1;ξ=6时,η=1.5;ξ=9时,η=1.5;ξ=12时,η=2;ξ=15时,η=2.所以η的可能取值为

3、1,1.5,2,且P(η=1)=P(ξ=3)=0.4,P(η=1.5)=P(ξ=6)+P(ξ=9)=0.4,P(η=2)=P(ξ=12)+P(ξ=15)=0.1+0.1=0.2.故η的分布列为η11.52P0.40.40.2所以η的期望E(η)=1×0.4+1.5×0.4+2×0.2=1.4.13思维升华离散型随机变量的期望和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的期望和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算

4、,注意离散型随机变量的取值与概率的对应.跟踪训练1某项大型赛事,需要从高校选拔青年志愿者,某大学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X,求X的分布列及期望.解 因为8名学生会干部中有5名男生,3名女生,所以X的分布列服从参数N=8,M=3,n=3的超几何分布.X的所有可能取值为0,1,2,3,其中P(X=i)=(i=0,1,2,3),则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.所以X的分布列为X0123P所以X的期望为E(X)=0×+1×+2×+3×==.题型二

5、 概率与统计的综合应用例2(2016·全国Ⅰ)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;13(2)若要求P(X≤n)≥0.5,确定n的

6、最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解 (1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,X的可能取值为16,17,18,19,20,21,22,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(

7、X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04;所以X的分布列为X16171819202122P0.040.160.240.240.20.080.04(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040(元).当n=20时,E(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。