欢迎来到天天文库
浏览记录
ID:42409326
大小:849.09 KB
页数:15页
时间:2019-09-14
《2016届《步步高》高考数学大一轮总复习 第十三章 推理与证明、算法、复数 第十三章 13.1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§13.1 合情推理与演绎推理1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:类比推理是由特殊到特殊的推理.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.
2、演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( × )(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √ )(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × )(4
3、)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ )(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是an=n(n∈N*).( × )(6)=2,=3,=4,…,=6(a,b均为实数),则可以推测a=35,b=6.( √ )1.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误答案 C解析 由“三段论”的推理方式可知,该推理的错误原因是
4、推理形式错误.2.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为__________.答案 1∶8解析 ∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,∴它们的体积比为1∶8.3.(2013·陕西)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n个等式可为____________________________________.答案 12-22+32
5、-42+…+(-1)n+1n2=(-1)n+1·解析 观察等式左边的式子,每次增加一项,故第n个等式左边有n项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n+1n2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{an},则a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,…,an-an-1=n,各式相加得an-a1=2+3+4+…+n,即an=1+2+3+…+n=.所以第n个等式为12-22+32-42+…+(-1)n+1n2=(-1)n+1.4.设等差数列{an}的前n项和为Sn,则S4,
6、S8-S4,S12-S8,S16-S12成等差数列.类比以上结论,设等比数列{bn}的前n项积为Tn,则T4,________,________,成等比数列.答案 解析 对于等比数列,通过类比,有等比数列{bn}的前n项积为Tn,则T4=a1a2a3a4,T8=a1a2…a8,T12=a1a2…a12,T16=a1a2…a16,因此=a5a6a7a8,=a9a10a11a12,=a13a14a15a16,而T4,,,的公比为q16,因此T4,,,成等比数列.题型一 归纳推理例1 设f(x)=,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3)
7、,然后归纳猜想一般性结论,并给出证明.思维点拨 先正确计算各式的值,再根据自变量之和与函数之和的特征进行归纳.解 f(0)+f(1)=+=+=+=,同理可得:f(-1)+f(2)=,f(-2)+f(3)=,并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x1+x2=1时,均有f(x1)+f(x2)=.证明:设x1+x2=1,∵f(x1)+f(x2)=+思维升华 归纳推理的一般步骤:(1)通过观察个别情况发现某些相同特征;(2)从已知的相同性质中推出一个明确表述的一般性命题. (1)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7
8、+8+9+
此文档下载收益归作者所有