全等三角形的判定-边角边

全等三角形的判定-边角边

ID:42346628

大小:46.00 KB

页数:4页

时间:2019-09-13

全等三角形的判定-边角边_第1页
全等三角形的判定-边角边_第2页
全等三角形的判定-边角边_第3页
全等三角形的判定-边角边_第4页
资源描述:

《全等三角形的判定-边角边》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、边角边一.教学目标:(一)知识与能力:(1)会用“边角边”定理判定两个三角形全等;(2)能正确的使用两个三角形的全等来证明两条线段相等、两个角相等。(二)过程与方法:在探索三角形全等判定定理的过程中,体会提出判定定理的必要性。(三)情感、态度和价值观:通过三角形全等判定定理的证明和使用,培养学生严密的逻辑思维。二.教学的重,难点及教学方法(一)教学重点:掌握三角形全等的判定方法——“边角边”定理。(二)教学难点:三角形全等判定“边角边”定理的应用。(三)教学方法:在让学生以直观感知和操作确认的方

2、式得到结论的同时引导学生认识证明的必要性,为严密的逻辑推理作好准备。加强数学理性训练,使学生养成言之有据的正确思维习惯。三.教具准备色卡纸、剪刀、三角形板、圆规。四.教学过程(一)复习回顾1.什么叫全等三角形?答:两个能完全重合的三角形叫做全等三角形。2.全等三角形的对应边、对应角有什么重要性质?答:全等三角形的对应边相等,对应角相等。3.上几节课,我们学习了一个判定两个三角形全等的定理,我们一起来回顾一下。答:三角形的“边边边”判定定理。(二)创设问题情境引入新课问题情境如果两个三角形有3组元

3、素对应相等,那么这两个三角形很有可能全等。这三组元素包含有以下四种情况:“两边一角”、“两角一边”、“三边”、“三角”。上几节课我们讨论了三边相等的情况,从这节课开始,我们将对“两边一角”进行讨论。如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?问题1:如果已知一个三角形的两边及一角,那么有几种可能的情况呢?(两种,两边一夹角和两边一对角)每一种情况下得到的三角形都全等吗?(三)探索新知:一.探究两边相等以及它们的夹角相等的三角形全等。再任意画出一个,再画出一个,使,,(即使两

4、边和它们的夹角对应相等)。把画好的剪下,放到上,它们全等吗?通过以上小实验,你发现了什么?二.得出结论同学们各抒己见后总结:发现对于已知的两条线段和一个角,以该角为夹角,所画的三角形都是全等的。这就是判别三角形全等的另外一种简便的方法:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)。三.例题讲解例1如图11.2-6,有一鱼塘,要测鱼塘两端A,B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD¬—CA,连接BC并延长到E,使CE—CB,连

5、接DE,那么量出DE的长就是A,B的距离,为什么?点拨:如果能证明△ABC≌△DEC,就可以得出AB=DE。在△ABC和△DEC中,CA=CD,CB=CE,如果能得出∠1=∠2,△ABC和△DEC就全等了。(证明过程见课件)从例一可以看出:因为全等三角形的对应边相等,对应角相等,所以,证明分别属于两个三角形的线段相等或者叫相等的问题,常常通过证明这两个三角形全等来解决。例2:如图,△ABC中,AB=AC,AD平分∠BAC,求证:△ABD≌△ACD.(证明过程板书)教师提问:由△ABD≌△ACD,

6、你能得出其它对应边和角的关系吗?回答:∠B=∠C,即等腰三角形两底角相等;∠ADB=∠ADC,BD=CD(即三线合一)四.两边及其中一边的对角对应相等已知两边及一对角的情况。通过一个小实验来回答:把一长一短两根细木棍的一段用螺丝钉绞合在一起,使长木棍的另一端与射线BC的端点B重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来。得出结论:两边及其中一边的对角对应相等,两个三角形不一定全等。(四)变式练习,巩固新知1.如图(1),△ABC中,BC=10cm,AB的中垂线交于BC

7、于D,AC的中垂线交BC于E,则△ADE的周长是______.2.如图(2),△ABC中,DE垂直平分AC,AE=2.5cm,△ABC的周长是9cm,则△ABC的周长是_______.(五)小结通过两个问题引导学生对本节课的内容作总结:1、今天我们学习了哪种方法判定两三角形全等?2.“边边角”能不能判定两个三角形全等?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。