欢迎来到天天文库
浏览记录
ID:42343989
大小:30.16 KB
页数:3页
时间:2019-09-13
《数学华东师大版八年级上册14.2 勾股定理的应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、14.2勾股定理的应用一、单元设计总体分析(一)教材所处的地位---教材分析:华东师大版《数学》八年级上册第14章第2节是学习勾股定理及其逆定理的应用。因此教学中可以结合实际情况让学生了解勾股定理及其逆定理在现实生活以及数学中的各种应用,体会勾股定理的文化价值.(二)单元教学目标:1.能熟练、灵活地应用勾股定理及其逆定理.2.会应用勾股定理及其逆定理解简单的实际问题.(三)单元教学重难点:勾股定理及其逆定理的应用.(四)单元教学策略:利用实物模型及多媒体将实际问题转化为应用勾股定理及其逆定理解直
2、角三角形的数学问题.二、课时教学设计 (一)教学目标知识与技能目标:能运用勾股定理及逆定理解决简单的实际问题.过程与分析目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件.情感与态度目标:培养合情推理能力,体会数形结合的思维方法,激发学习热情(二)教学重点、难点教学重点:勾股定理的应用.教学难点:将实际问题转化为“应用勾股定理及其逆定理解直角三角形的数学问题”.原因分析:1.例1中学生因为其空间想像能力有限,很难想到蚂蚁爬行的路径是什么,为此通过制作圆柱模型解决难题.2.例2中学生
3、难找到要计算的具体线段.通过多媒体演示来启发学生的思维.教学突破点:突出重点的教学策略:通过回忆复习、例题、小结等,突出重点“勾股定理及其逆定理的应用”,(三)、教学过程复习练习,引出课题例1、在Rt△ABC中,两条直角边分别为3,4,求斜边c的值? 答案:c=5.例2、在Rt△ABC中,一直角边分别为5,斜边为13,求另一直角边的长是多少?答案:另一直角边的长是12.通过简单计算题的练习,帮助学生回顾勾股定理,加深定理的记忆理解,为新课作好准备小结:在上面两个小题中,我们应用了勾股定理:在R
4、t△ABC中,若∠C=90°,则c2=a2+b2 .加深定理的记忆理解,突出定理的作用.勾股定理能解决直角三角形的许多问题,因此在现实生活和数学中有着广泛的应用.例1如图14.2.1,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.分析:蚂蚁实际上是在圆柱的半个侧面内爬行.大家用一张白纸卷折圆柱成圆柱形状,标出A、B、C、D各点,然后打开,蚂蚁在圆柱上爬行的距离,与在平面纸上的距离一样.AC之间的最短距离是什么
5、?根据是什么?(学生回答)根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形ASBCD对角线AC之长.我们可以利用勾股定理计算出AC的长。解如图,在Rt△ABC中,BC=底面周长的一半=10cm, 根据勾股定理得 (提问:勾股定理)∴AC===≈10.77(cm)(勾股定理).答:最短路程约为10.77cm.例2一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图14.2.3的某工厂,问这辆卡车能否通过该工厂的厂门?图14.2.3分析由于厂门宽度足够,所以卡车能否通
6、过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图14.2.3所示,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.解:OC=1米 (大门宽度一半),OD=0.8米 (卡车宽度一半)在Rt△OCD中,由勾股定理得CD===0.6米,CH=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡车能通过厂门.通过动手作模型,培养学生的动手、动脑能力,解决“学生空间想像能力有限,想不到蚂蚁爬行的路径”的难题,从而突破难点.由学生回答“AC之间的最短距离及根据”,有
7、利于帮助学生找准新旧知识的连接点,唤起与形成新知识相关的旧知识,从而使学生的原认知结构对新知识的学习具有某种“召唤力”再次提问,突出勾股定理的作用,加深记忆.利用多媒体设备演示卡车通过厂门正中间时的过程(在几何画板上画出厂门的形状,用移动的矩形表示卡车,矩形的高低可调),让学生通过观察,找到需要计算的线段CH、CD及CD所在的直角三角形OCD,将实际问题转化为应用勾股定理解直角三角形的数学问题.课时小结 本节课我们学习了应用勾股定理来解决实际问题.在实际当中,长度计算是一个基本问题,而长度计算
8、中应用最多、最基本的就是解直角三角形,利用勾股定理已知两边求第三边,我们要掌握好这一有力工具.课堂练习1.如图,从电杆离地面5米处向地面拉一条7米长的钢缆,求地面钢缆固定点A到电杆底部B的距离.(第1题)2.轮船A以16海里/时的速度离开港口O向东北方向航行,轮船B在同时同地以12海里/时的速度向西北方向航行,试求A、B两船离开港口O一个半小时后的距离。(四).作业习题14.21.2.3
此文档下载收益归作者所有