资源描述:
《101 分类加法计数原理与分步乘法计数原理练习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§10.1分类加法计数原理与分步乘法计数原理一、选择题1.如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )ABCDA.72种B.48种C.24种D.12种解析先分两类:一是四种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24种涂法;二是用三种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72种.答案A2.如图,用6种不同的颜色把图中A、B、C、D四块
2、区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( ).A.400种B.460种C.480种D.496种解析 从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A不同色3种,∴不同涂法有6×5×4×(1+3)=480(种),故选C.答案 C3.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( ).A.6种B.12种C.24种D.30种解析分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选
3、1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种),故选C答案C4.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )A.8种B.9种C.10种D.11种解析分四步完成,共有3×3×1×1=9种.答案B5.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( ).A.60B.48C.36D.24解析 长方体的6个表面构
4、成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B.答案 B6.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有( ).A.16种B.18种C.37种D.48种解析 三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37(种).答案 C7.4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲
5、的不同选法有( ).A.12种B.24种C.30种D.36种解析 分三步,第一步先从4位同学中选2人选修课程甲.共有C种不同选法,第二步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共有C×2×2=24(种).答案 B二、填空题8.将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设Ni(i=1,2,3)表示第i行中最大的数,则满足N1<N2<N3的所有排列的个数是________.(用数字作答)解析 由已知数字6一定在第三行,第三行的排法种数为A
6、A=60;剩余的三个数字中最大的一定排在第二行,第二行的排法种数为AA=4,由分步计数原理满足条件的排列个数是240.答案 2409.数字1,2,3,…,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有________种.4解析 必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法.答案 1210.将
7、数字1,2,3,4,5,6排成一列,记第i个数为ai(i=1,2,…,6),若a1≠1,a3≠3,a5≠5,a1<a3<a5,则不同的排列方法有________种(用数字作答).解析分两步:(1)先排a1,a3,a5,若a1=2,有2种排法;若a1=3,有2种排法;若a1=4,有1种排法,共有5种排法;(2)再排a2,a4,a6,共有A=6种排法,故不同的排列方法有5×6=30种.答案3011.用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标
8、号为1、5、9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.123456789解析分步求解.只要在涂好1,5,9后,涂2,3,6即可,若3与1,5,9同色,则2,6的涂法为2×2,若3与1,5,9不同色,则3有两种涂法,2,6只有一种涂法,同理涂4,7,8,即涂法总数是C(2×2+C×1)×(2×2+C×1)=3×6×6=