欢迎来到天天文库
浏览记录
ID:42274758
大小:24.50 KB
页数:5页
时间:2019-09-11
《数学广角 鸽巢问题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、课题数学广角鸽巢问题教学目标 1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。 2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。教学重难点 经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。教学难点 理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。 教具准备相关课件相关学具(若干笔和筒)课时教学过
2、程教学批注、调整教学板书教学反思一、游戏激趣,初步体验。 游戏规则是:请这四位同学从数字1.2.3引题自然中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。 [设计意图:联系学生的生活实际,激发学习兴趣,使学生积极投入到后面问题的研究中。] 二、操作探究,发现规律。 1.具体操作,感知规律 教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法? (1)学生汇报结果 (4,0,0)(3,1,0)(2,2,0)(2,1,1) (2)师生交流摆放的结果 (3)小结:不管怎
3、么放,总有一个筒里至少放进了2支笔。 (学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”) [设计意图:鸽巢问题对于学生来说,比较抽象,特别是“不管怎么放,总有一个筒里至少放进了2支笔。”这句话的理解。所以通过具体的操作,枚举所有的情况后,引导学生直接关注到每种分法中数量最多的筒,理解“总有一个筒里至少放进了2支笔”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。] 质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢? 2.假设法,用“平均分”来演绎“鸽巢问题”。
4、 1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论? 学生思考——同桌交流——汇报充分调动了学生参与的积极性,让学生主动获得知识 2汇报想法 预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。 3学生操作演示分法,明确这种分法其实就是“平均分”。 [设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。] 三、探究归纳,形成规律 1.课件出示第二个例题:5只鸽子飞回2个鸽
5、巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。 [设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。] 根据学生回答板书:5÷2=2……1 (学情预设:会有一些学生回答,至少数=商+余数至少数=商+1) 根据学生回答,师边板书:至少数=商+余数? 至少数=商+1? 2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书) …… 7÷5=1……2 8÷5=1……3 9÷5=1……4鼓励学生积极的自主探索,寻找不同的证明方
6、法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。 观察板书,同学们有什么发现吗? 得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。 板书:至少数=商+1 [设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2支”得到“至少商+余数”个,再到得到“商+1”的结论。] 师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应
7、用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。 四、运用规律解决生活中的问题 课件出示习题.: 1.三个小朋友同行,其中必有几个小朋友性别相同。 2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。 3.从电影院中任意找来13个观众,至少有两个人属相相同。 …… [设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。] 五、课堂总结 这节课我们学习了什么有趣的规律?请学生畅谈,
8、师总结。教学板书教学反思数学广角___-鸽巢问题5÷2=2……1 8÷5=1……3 9÷5=1……4至少数=商+1?学生学习积极,效果非常的好
此文档下载收益归作者所有