欢迎来到天天文库
浏览记录
ID:41690974
大小:85.68 KB
页数:17页
时间:2019-08-30
《第二章一元二次方程导学案_图文》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2、知道一元二次方程的一般形式,能熟练地把一元二次方程整理成一般形式,能写出一•般形式的二次项系数、一次项系数和常数项。学习重点:能建立一元二次方程模型,把一元二次方程整理成一-般形式。学习难点:把实际问题转化为一元二次方程的模型。一、情境导入:前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻呦现实世界数量关系的工具。木节课我们将继续进行建立方程模型的探究。二、自主学习:认真阅读教材P26-27页内容完成下列各题:1、如果一个方程通过移项可以使右边为0,而左边是只含有未知数的二次多项式,那么这样的方程叫作,或只含有个未知数,并且未
2、知数的最高次数是,这样的方程,叫做一元二次方程。它的一般形式是:d+bx+c=0,(a,b,c是已知数且aHO),其屮a,b,c分别叫作二次项系数、一次项系数、常数项。(思考:为什么规定0工0?对方、c有什么要求吗?)2.指出课木P26“动脑筋”中的方程①,②中的二次项系数、一次项系数和常数项。3.找出下列方程屮是一元二次方程的是.(只填正确的序号)①7〒+5jv+1;②一)^=7;(§)6x2-x=4;®2x2+5y=3;®x2=0;©x2+3x=(x+2)(x—2):©ax2++c=0;⑧(x+2)(3x-1)=(x-1)2o学法指导:(1)判断一元二次方程的三个
3、条件:①方程;②含有个未知数;③未知数的次数是2(2)方程需先整理,再利用三个条件进行判断。三、合作探究:1.将方程2x(x-l)=3(x+2)化成一元二次方程的一般形式,并写出其中的二次项、一次项、常数项、二次项系数、一次项系数.2.把关于x的方程x2+2Z:=^-2U+1)化为一元二次方程的一般形式,并写淇中的二次项系数、一次项系数和常数项.四、拓展提升:1、当加为何值时,关于兀的方程:(加+1)J"卜2+27〃秋+5=0是一元二次方程.2、已知关于x的方程(m-3)x2+(加+3)兀一5=0(1)当/〃为何值时,此方程是一元一次方程?并求出此时方程的解.(2)当
4、刃为何值时,此方程是一元二次方程?并写出其屮的二次项系数、一次项系数和常数项.五、课堂检测:完成教材P28页练习题第1、2题;习题2.1A组第1、2题、B组5题。六、课堂小结:这一节课你学会了什么?伤〈还冇什么不明白的地方?七、布置作业:教材P28页习题2.1A组第3、4题;B组6、7题。八、教学反思:课题:2.2一元二次方程的解法一221配方法(1)第二章第2课时总第12课时主备人:孙荣审核人:九年级数学备课组主讲人:班次姓名类别学习目标:1•能利用平方根的意义解一元二方程.熟练用平方根的意义解形如(dx+b)2—£=0仗》0)的方程.2.初步体会用“降次”化归的数
5、学思想解一元二次方程.学习重点:熟练用平方根的意义解形如(or+b)2-£=0伙》0)的方程.学习难点:熟练用平方根的意义解形如(做+b)2-£=0伙no)的方程.一、情境导入:八年级我们学习了平方根的意义,那么一个非负数的平方根有几个?若x?=4则X二。今犬我们一起利用平方根的意义解一元二方程。二、自主学习:认真阅读教材P30-31页内容完成下列问题:1.方程①中由兀2=2500得到x=±5Q的依据是。我们把这样解一元二次方程的方法叫做宜接开平方法。2.通过P30页“动脑筋”和例1屮解方程的方法,思考什么样方程适合卅直接开平方法?+学法指导:想一想如何解形如(or+
6、b)2-k=0的一元二次方程呢?其中£应满足什么要求?(3)36-(兀+2)2=03.仿照P31页例2的解法解一元二次方程.4(尤+1尸-25=04.归纳总结直接开平方法解一元二次方程的步骤.三、合作探究:用总接开平方法解方程:(1)%2-49=0(2)3j2-18=0(4)12(1_2兀尸_48=0(5)(%+3)2-16=0(6)3(2无・1尸—27=0四、拓展提升1.已知(十+),+1)2=4,求X2+y2的值.2.已知一个等腰三角形的两边长分别是方程4-(x-10尸=0的两根,求等腰三角形的周长.五、课堂检测:完成教材P31页练习题六、课堂小结:这一节课你学会
7、了什么?你还有什么不明白的地方?七、布置作业:教材P41页习题2.2A组第1题。八、教学反思:2.领会配方法是一种重要的数学方法,在用配方法将一元二次方程变形的过程中,进一步体会化归的思想方法.学习重点:用配方法解二次项系数为1的一元二次方程.学习难点:用配方法将一元二次方程变形的过程。一、情境导入:七年级我们所学习的完全平方公式用数学表达式表示怎样?它具冇这样的特征?二、自主学习:认真阅读教材P32-33页内容完成下列问题:1、独立完成P32页“做一做”2、“探究”中所列出的方程x2+4x=12,能直接利用平方根的意义求解吗?在解法中第二步为什么方
此文档下载收益归作者所有