资源描述:
《2018版高中数学北师大版选修2-3学案:第一章+4 简单计数问题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、计数原理§4简单计数问题【学习目标】1•进一步理解和掌握分类加法计数原理和分步乘法计数原理2进一步深化排列与组合的概念.3.能综合运用排列、组合解决计数问题.H知识梳理知识点一两个计数原理1.分类加法计数原理(加法原理)完成一件事,可以有〃类办法,在第一类办法屮有如种方法,在第二类办法中有加2种方法,……,在第料类办法中有®种方法,那么,完成这件事共有川=种方法.2.分步乘法计数原理(乘法原理)完成一件事需要经过n个步骤,缺一不可,做第一步有如种方法,做第二步有加2种方法,……做第斤步有伽种方法,那么,完成这件事共有何=种方法.3.分类加法计数原理
2、与分步乘法计数原理,都涉及完成一件事的不同方的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其屮的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.知识点二排列1.排列从比个的元素屮取出个元素,按照一定的排成一列,叫作从n个不同的元素中任意取出m个元素的-个排列.2.排列数排列数定义及表示从n个不同元素屮取出加伽W/2)个元素的所有排列的个数,叫作从/?个不同元素中取出加个元素的排列数,记作排列数公式乘积式A:=阶乘式AR排列数的性质A:=:a2=,0!=1知识点
3、三组合1.组合一般地,从〃个不同的元素中,任取个元素为一组,叫作从〃个不同的元素中取出加个元素的一个组合.2.组合数(1)组合数定义:从粒个不同元素中取IB个元素的,叫作从〃个不同元素中取出加个元素的组合数,用符号表示.(2)组合数公式组合数乘积形式严A::1公式阶乘形式5n!C"m!(n~m)!备注弘〃2WN+,且〃规定C?=特别提醒:1.排列组合综合题的一般解法一般坚持先组后排的原则,即先选元素后排列,同时注意按元素性质分类或按事件的发生过程分类.2.解决有限制条件的排列、组合问题的一般策略(1)特殊元素优先安排的策略.(2)正难则反,等价转化
4、的策略.(3)相邻问题捆绑处理的策略.(4)不相邻问题插空处理的策略.(5)定序问题除法处理的策略.(6)“小集团”排列问题中先整体后局部的策略.(7)平均分组问题,除法处理的策略.(8)构造模型的策略.题型探究类型一两个计数原理的应用命题角度1“类中有步”的计数问题例1电视台在某节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱屮有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有种不同的结果.反思与感悟用流程图描述计数问题,类中有步的情形如图所示:具体意义如下:从A
5、到B算作一件事的完成,完成这件事有两类办法,在第1类办法中有3步,在第2类办法中有2步,每步的方法数如图所示.所以,完成这件事的方法数为m1加2加3+加4加5,“类”与“步”可进一步地理解为:“类”用“+”号连接,“步”用“X”号连接,“类”独立,“步”连续,“类”标志一件事的完成,“步”缺一不可.跟踪训练1现有4种不同颜色,要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种命题角度2“步中有类”的计数问题例2有4位同学在同一天的上、下午参加“身高与体重”、“立定
6、跳远"、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测一人,则不同的安排方式共有种.(用数字作答)反思与感悟用流程图描述计数问题,步中有类的情形如图所示:从计数的角度看,由人到D算作完成一件事,可简单地记为A~^D.完成A_D这件事,需要经历三步,即B-C,C-D其中B_C这步又分为三类,这就是步中有类.其中“0=1,2,3,4,5)表示相应步的方法数.完成A—D这件事的方法数为171伽2+加3+加4)加5.以上给出了处理步中有类问题的一
7、般方法.跟踪训练2如图所示,使电路接通,开关不同的开闭方式共有()A.11B.12C.20D.21类型二排列与组合的综合应用命题角度1不同元素的排列、组合问题例3有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有多少种?反思与感悟(1)解排列、组合综合问题的一般思路是“先选后排”,也就是先把符合题意的元素都选出来,再对元素或位置进行排列.(2)解排列、组合综合问题时的注意点①元素是否有序是区分排列与组合的基本方法,无序的
8、问题是组合问题,有序的问题是排列问题.②对于有多个限制条件的复杂问题,应认真分析每个限制条件,然后再考虑是分类还是分步,这