欢迎来到天天文库
浏览记录
ID:16092152
大小:183.51 KB
页数:8页
时间:2018-08-07
《高中数学第一章计数原理4简单计数问题导学案北师大版选修2-3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、北师大版高中数学选修2_3导学案§4简单计数问题自主整理1.区别排列问题与组合问题的关键是元素是否_____________________.2.解决相邻元素问题的方法是____________________.3.解决元素不相邻问题的方法是____________________.4.有特殊要求的元素问题常用____________________.5.有特殊要求的位置问题常用____________________.6.无序平均分组问题常用____________________.7.相同元素分组问题常用_____________
2、_______.8.“至多”“至少”问题常用____________________.高手笔记1.捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”.例如,一般地,n个不同元素排成一列,要求其中某m(m≤n)个元素必相邻的排列有A·A个.其中A是一个“整体排列”,而A则是“局部排列”.2.插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.运用插空法解决“元素不相邻问题”时,要同时借助框图和数数法求解.
3、3.占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.4.调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有A种,m(m4、组合的应用题,一般来讲要解决好三大难题:一是确定问题的属性,即所给问题是排列还是组合;二是确定解题策略,即是要分类求解还是分步求解;三是选择恰当的解题方法,即是用直接法还是间接法.而这三大难题的关键则是真正弄清“三对关系”的深刻含义.(1)“分类与分步”的关系分类复杂事件A的排列与组合问题,需要对A在一个标准下分类讨论,把A分解为n类简单事件A1,A2,…,An.分类的原则是:A=A1∪A2∪…∪An,Ai∩Aj=(i≠j,i、j=1,2,…,n).在这样的原则下对事件A分类,能够确保分类的不漏不重.北师大版高中数学选修2_3导学案把5、A分为A1,A2,…,An的同时,对应的办法S也随之被分为n类办法S1,S2,…,Sn,且S=S1∪S2∪…∪Sn,Si∩Sj=(i≠j;i、j=1,2,…,n).其结果用分类加法计数原理计算.分步事件A完成分类以后,对每一类要进行分步,分步要做到“步骤连续”和“步骤独立”,这样就可以确保对每一类事件的分步不漏不重.事件的分步对应方法的分步.如A1分为n步B1,B2,…,Bn,则对应的有S1被分为n种方法S11,S12,…,S1n.其结果用分步乘法计数原理计算.由此可见,我们可以得到两点结论:其一,分类与分步是区别选用分类加法计数原理6、和分步乘法计数原理的唯一标准,即分类相加,分步相乘;其二,若把事件A分为n类简单事件A1,A2,…,An,并且完成事件Ak又需分作Sk步(k=1,2,3,…,n),对应每一步又可有Ski(i=1,2,3,…,n)种不同方法,这样完成事件A就共有N=(S11·S12·S13…S1n)+(S21·S22·S23…S2n)+…+(Sn1·Sn2·Sn3…Snn)种不同方法.(2)“有序与无序”的关系界定排列与组合问题的唯一标准是“顺序”,“有序”是排列问题,“无序”是组合问题.排列与组合问题并存的时候,解答排列与组合问题,一般采用先组合后排7、列的方法解答.(3)“元素与位置”的关系解答排列与组合问题,界定哪些事物是元素,哪些事物是位置至关重要,又没有唯一的定势标准,所以要辩证地去看待元素与位置.解题过程中,要优先安排有限制条件的特殊元素和特殊位置,并灵活运用“捆绑法”和“插空法”,“直接法”和“间接法”.2.排列、组合应用题的基本题型与解题策略是什么?剖析:排列、组合应用题的常见类型及解题策略如下表:类型特征常见题型解题策略组合排列指定元素型从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都包含在内先C后A策略分类求解策略CC从n个不同元素中每次取出k8、个不同元素作排列(或组合),规定某r个元素都不包含在内从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素分类求解策略北师大版高中数学选修2_3导学案从n个不同元素中
4、组合的应用题,一般来讲要解决好三大难题:一是确定问题的属性,即所给问题是排列还是组合;二是确定解题策略,即是要分类求解还是分步求解;三是选择恰当的解题方法,即是用直接法还是间接法.而这三大难题的关键则是真正弄清“三对关系”的深刻含义.(1)“分类与分步”的关系分类复杂事件A的排列与组合问题,需要对A在一个标准下分类讨论,把A分解为n类简单事件A1,A2,…,An.分类的原则是:A=A1∪A2∪…∪An,Ai∩Aj=(i≠j,i、j=1,2,…,n).在这样的原则下对事件A分类,能够确保分类的不漏不重.北师大版高中数学选修2_3导学案把
5、A分为A1,A2,…,An的同时,对应的办法S也随之被分为n类办法S1,S2,…,Sn,且S=S1∪S2∪…∪Sn,Si∩Sj=(i≠j;i、j=1,2,…,n).其结果用分类加法计数原理计算.分步事件A完成分类以后,对每一类要进行分步,分步要做到“步骤连续”和“步骤独立”,这样就可以确保对每一类事件的分步不漏不重.事件的分步对应方法的分步.如A1分为n步B1,B2,…,Bn,则对应的有S1被分为n种方法S11,S12,…,S1n.其结果用分步乘法计数原理计算.由此可见,我们可以得到两点结论:其一,分类与分步是区别选用分类加法计数原理
6、和分步乘法计数原理的唯一标准,即分类相加,分步相乘;其二,若把事件A分为n类简单事件A1,A2,…,An,并且完成事件Ak又需分作Sk步(k=1,2,3,…,n),对应每一步又可有Ski(i=1,2,3,…,n)种不同方法,这样完成事件A就共有N=(S11·S12·S13…S1n)+(S21·S22·S23…S2n)+…+(Sn1·Sn2·Sn3…Snn)种不同方法.(2)“有序与无序”的关系界定排列与组合问题的唯一标准是“顺序”,“有序”是排列问题,“无序”是组合问题.排列与组合问题并存的时候,解答排列与组合问题,一般采用先组合后排
7、列的方法解答.(3)“元素与位置”的关系解答排列与组合问题,界定哪些事物是元素,哪些事物是位置至关重要,又没有唯一的定势标准,所以要辩证地去看待元素与位置.解题过程中,要优先安排有限制条件的特殊元素和特殊位置,并灵活运用“捆绑法”和“插空法”,“直接法”和“间接法”.2.排列、组合应用题的基本题型与解题策略是什么?剖析:排列、组合应用题的常见类型及解题策略如下表:类型特征常见题型解题策略组合排列指定元素型从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都包含在内先C后A策略分类求解策略CC从n个不同元素中每次取出k
8、个不同元素作排列(或组合),规定某r个元素都不包含在内从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素分类求解策略北师大版高中数学选修2_3导学案从n个不同元素中
此文档下载收益归作者所有