Section165IntegralsinCylindricalandSphericalCoordinates165节积分在圆柱和球面坐标

Section165IntegralsinCylindricalandSphericalCoordinates165节积分在圆柱和球面坐标

ID:41359204

大小:291.81 KB

页数:8页

时间:2019-08-22

Section165IntegralsinCylindricalandSphericalCoordinates165节积分在圆柱和球面坐标_第1页
Section165IntegralsinCylindricalandSphericalCoordinates165节积分在圆柱和球面坐标_第2页
Section165IntegralsinCylindricalandSphericalCoordinates165节积分在圆柱和球面坐标_第3页
Section165IntegralsinCylindricalandSphericalCoordinates165节积分在圆柱和球面坐标_第4页
Section165IntegralsinCylindricalandSphericalCoordinates165节积分在圆柱和球面坐标_第5页
资源描述:

《Section165IntegralsinCylindricalandSphericalCoordinates165节积分在圆柱和球面坐标》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Section16.5 IntegralsinCylindricalandSphericalCoordinatesInthelastsectionwelookedatintegratingoveraregioninthexy-planegiveninpolarcoordinatesWecanextendpolarcoordinatesinto3spacebyaddinginthez-axisTheresultisCylindricalCoordinatesJustassomedoubleintegralsareeasiertodoinpolar

2、coordinates,sometripleintegralswillbeeasiertocomputeinCylindricalCoordinatesCylindricalCoordinatesWecanrepresentpointsin3spacewith.(r,θ,0).(r,θ,z)θryzxCylindricalCoordinatesWhattypeofsurfacesdowegetifr=cwherecisaconstant?Whattypeofsurfacesdowegetifθ=cwherecisaconstant?Whatty

3、peofsurfacesdowegetifz=cwherecisaconstant?ThesearesometimesreferredtoasthefundamentalsurfacesRegionsthataremosteasilydescribedincylindricalcoordinatesarethosewhoseboundariesarefundamentalsurfacesIntegrationinCylindricalCoordinatesRecallthatinpolarcoordinateswefoundthatdA=rdr

4、dθThiswasbasedonthefactthatΔA≈ΔrΔθNowinrectangularcoordinatesΔV≈ΔxΔyΔzandΔA≈ΔxΔysoΔV≈ΔAΔzPuttingthesetwolinestogetherwegetΔV≈rΔrΔθΔzJustaswithotheriteratedintegrals,ourorderofintegrationwilldependonourproblemLet’stakealookatthefirst2problemsontheworksheetSphericalCoordinates

5、Wecanrepresentpointsin3spaceusing.(r,θ,0)=(x,y,0).(r,θ,z)=(x,y,z)θryzxρSphericalCoordinatesWhattypeofsurfacesdowegetifρ=cwherecisaconstant?Whattypeofsurfacesdowegetifθ=cwherecisaconstant?Whattypeofsurfacesdowegetif=cwherecisaconstant?Thesearesometimesreferredtoasthefundament

6、alsurfacesRegionsthataremosteasilydescribedinsphericalcoordinatesarethosewhoseboundariesarefundamentalsurfacesIntegrationinSphericalCoordinatesWeneedtoexpressthevolumeelement,dV,insphericalcoordinatesLet’stakealookatwhatavolumeelementlookslikeinsphericalcoordinatesWecanseeWh

7、enweintegrateinsphericalcoordinates,wehaveLet’srevisitthesecondproblemontheworksheetNowlet’strysomeoftheotherproblems

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。