高中数学导数知识点归纳总结教程

高中数学导数知识点归纳总结教程

ID:41354649

大小:222.50 KB

页数:5页

时间:2019-08-22

高中数学导数知识点归纳总结教程_第1页
高中数学导数知识点归纳总结教程_第2页
高中数学导数知识点归纳总结教程_第3页
高中数学导数知识点归纳总结教程_第4页
高中数学导数知识点归纳总结教程_第5页
资源描述:

《高中数学导数知识点归纳总结教程》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、§14.导数知识要点导数导数的概念导数的运算导数的应用导数的几何意义、物理意义函数的单调性函数的极值函数的最值常见函数的导数导数的运算法则1.导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.②以知函数定义域为,的定义域为,则与关系为.2.函数在点处连续与点处可导的关系:⑴函数在点处连续是在点处可导的必要不充分条件.可以证明,如果在点处可导,那么点处连续.事实上,令,则相当于

2、.于是⑵如果点处连续,那么在点处可导,是不成立的.例:在点处连续,但在点处不可导,因为,当>0时,;当<0时,,故不存在.注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3.导数的几何意义:函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为4.求导数的四则运算法则:(为常数)注:①必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设,,则在处均不可导,但它们和在处均可导.5.复合函数的求导法则:或复合函数的求导法则可推广到多个中间变量的情形.

3、6.函数单调性:⑴函数单调性的判定方法:设函数在某个区间内可导,如果>0,则为增函数;如果<0,则为减函数.⑵常数的判定方法;如果函数在区间内恒有=0,则为常数.注:①是f(x)递增的充分条件,但不是必要条件,如在上并不是都有,有一个点例外即x=0时f(x)=0,同样是f(x)递减的充分非必要条件.②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.7.极值的判别方法:(极值是在附近所有的点,都有<,则是函数的极大值,极小值同理)当函数在点处连续时,①如果在附近的左侧>0,右侧<0,那么是极大值;②如果在附近的左侧<0

4、,右侧>0,那么是极小值.也就是说是极值点的充分条件是点两侧导数异号,而不是=0①.此外,函数不可导的点也可能是函数的极值点②.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①:若点是可导函数的极值点,则=0.但反过来不一定成立.对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数,使=0,但不是极值点.②例如:函数,在点处不可导,但点是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9.几种常见的函数导数:I.(为常

5、数)()II.III.求导的常见方法:①常用结论:.②形如或两边同取自然对数,可转化求代数和形式.③无理函数或形如这类函数,如取自然对数之后可变形为,对两边求导可得.导数知识点总结复习经典例题剖析考点一:求导公式。例1.是的导函数,则的值是。考点二:导数的几何意义。例2.已知函数的图象在点处的切线方程是,则。例3.曲线在点处的切线方程是。点评:以上两小题均是对导数的几何意义的考查。考点三:导数的几何意义的应用。例4.已知曲线C:,直线,且直线与曲线C相切于点,求直线的方程及切点坐标。点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可

6、导是相应曲线上过该点存在切线的充分条件,而不是必要条件。考点四:函数的单调性。例5.已知在R上是减函数,求的取值范点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。考点五:函数的极值。例6.设函数在及时取得极值。(1)求a、b的值;(2)若对于任意的,都有成立,求c的取值范围。点评:本题考查利用导数求函数的极值。求可导函数的极值步骤:①求导数;②求的根;③将的根在数轴上标出,得出单调区间,由在各区间上取值的正负可确定并求出函数的极值。考点六:函数的最值。例7.已知为实数,。求导数;(2)若,求在区间上的最大值和最小值。点评:本题考查可导函数最值的求法。求可导函数在区

7、间上的最值,要先求出函数在区间上的极值,然后与和进行比较,从而得出函数的最大最小值。考点七:导数的综合性问题。例8.设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为。(1)求,,的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。