Bacterial Foraging Optimization Algorithm-chapter

Bacterial Foraging Optimization Algorithm-chapter

ID:41336667

大小:331.60 KB

页数:13页

时间:2019-08-22

Bacterial Foraging Optimization Algorithm-chapter_第1页
Bacterial Foraging Optimization Algorithm-chapter_第2页
Bacterial Foraging Optimization Algorithm-chapter_第3页
Bacterial Foraging Optimization Algorithm-chapter_第4页
Bacterial Foraging Optimization Algorithm-chapter_第5页
资源描述:

《Bacterial Foraging Optimization Algorithm-chapter》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、BacterialForagingOptimizationAlgorithm:TheoreticalFoundations,Analysis,andApplications1112SwagatamDas,ArijitBiswas,SambartaDasgupta,andAjithAbraham1Dept.ofElectronicsandTelecommunicationEngg,JadavpurUniversity,Kolkata,India2NorwegianUniversityofScienceandTechn

2、ology,Norwayswagatamdas19@yahoo.co.in,arijitbiswas87@gmail.com,sambartadg@gmail.com,ajith.abraham@ieee.orgAbstract.Bacterialforagingoptimizationalgorithm(BFOA)hasbeenwidelyacceptedasaglobaloptimizationalgorithmofcurrentinterestfordistributedoptimizationandcont

3、rol.BFOAisinspiredbythesocialforagingbehaviorofEscherichiacoli.BFOAhasalreadydrawntheattentionofresearchersbecauseofitsefficiencyinsolvingreal-worldoptimizationproblemsarisinginseveralapplicationdomains.TheunderlyingbiologybehindtheforagingstrategyofE.coliisem

4、ulatedinanextraordinarymannerandusedasasimpleoptimizationalgorithm.ThischapterstartswithalucidoutlineoftheclassicalBFOA.ItthenanalysesthedynamicsofthesimulatedchemotaxisstepinBFOAwiththehelpofasimplemathematicalmodel.Takingacuefromtheanalysis,itpresentsanewada

5、ptivevariantofBFOA,wherethechemotacticstepsizeisadjustedontherunaccordingtothecurrentfitnessofavirtualbacterium.Nest,ananalysisofthedynamicsofreproductionoperatorinBFOAisalsodiscussed.ThechapterdiscussesthehybridizationofBFOAwithotheroptimizationtechniquesanda

6、lsoprovidesanaccountofmostofthesignificantapplicationsofBFOAuntildate.1.IntroductionBacteriaForagingOptimizationAlgorithm(BFOA),proposedbyPassino[1],isanewcomertothefamilyofnature-inspiredoptimizationalgorithms.Foroverthelastfivedecades,optimizationalgorithmsl

7、ikeGeneticAlgorithms(GAs)[2],EvolutionaryProgramming(EP)[3],EvolutionaryStrategies(ES)[4],whichdrawtheirinspirationfromevolutionandnaturalgenetics,havebeendominatingtherealmofoptimizationalgorithms.RecentlynaturalswarminspiredalgorithmslikeParticleSwarmOptimiz

8、ation(PSO)[5],AntColonyOptimization(ACO)[6]havefoundtheirwayintothisdomainandprovedtheireffectiveness.Followingthesametrendofswarm-basedalgorithms,PassinoproposedtheBFOAin[1].Appli

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。