资源描述:
《1.2.1 函数的概念 第1课时 教案(人教A版必修1)new》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、1.2.1函数的概念新知探究(1)给出下列三种对应:(幻灯片)①一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2.时间t的变化范围是数集A={t
2、0≤t≤26},h的变化范围是数集B={h
3、0≤h≤845}.则有对应f:t→h=130t-5t2,t∈A,h∈B.②近几十年来,大气层的臭氧迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106km2)随时间t(单位:年)从1
4、991~2001年的变化情况.图1-2-1-1根据图1-2-1-1中的曲线,可知时间t的变化范围是数集A={t
5、1979≤t≤2001},空臭氧层空洞面积S的变化范围是数集B={S
6、0≤S≤26},则有对应:f:t→S,t∈A,S∈B.③国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中的恩格尔系数y随时间t(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.“八五”计划以来我国城镇居民恩格尔系数变化情况时间1991199219931994199519961
7、9971998199920002001恩格尔系数y53.852.950.149.949.948.646.444.541.939.237.9根据上表,可知时间t的变化范围是数集A={t
8、1991≤t≤2001},恩格尔系数y的变化范围是数集B={S
9、37.9≤S≤53.8}.则有对应:f:t→y,t∈A,y∈B.以上三个对应有什么共同特点?(2)我们把这样的对应称为函数,请用集合的观点给出函数的定义.(3)函数的定义域是自变量的取值范围,那么你是如何理解这个“取值范围”的?(4)函数有意义又指什么?(5)函数f:A→B的值
10、域为C,那么集合B=C吗?活动:让学生认真思考三个对应,也可以分组讨论交流,引导学生找出这三个对应的本质共性.解:(1)共同特点是:集合A、B都是数集,并且对于数集A中的每一个元素x,在对应关系f:A→B下,在数集B中都有唯一确定的元素y与之对应.(2)一般地,设A、B都是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中x叫自变量,x的取值范围A叫做函数的定义域,函数值的集合{
11、f(x)
12、x∈A}叫做函数的值域.在研究函数时常会用到区间的概念,设a,b是两个实数,且a
13、a≤x≤b}闭区间[a,b]{x
14、a15、a≤x
16、a17、x≥a}[a,+∞){x
18、x>a}(a,b]{x
19、x≤a}(-∞,a]{x
20、x21、有实际意义时,那么还要满足实际取值等等.(5)CB.应用示例思路11.已知函数f(x)=+,(1)求函数的定义域;(2)求f(-3),f()的值;(3)当a>0时,求f(a),f(a-1)的值.活动:(1)让学生回想函数的定义域指的是什么?函数的定义域是使函数有意义的自变量的取值范围,故转化为求使和有意义的自变量的取值范围;有意义,则x+3≥0,有意义,则x+2≠0,转化解由x+3≥0和x+2≠0组成的不等式组.(2)让学生回想f(-3),f()表示什么含义?f(-3)表示自变量x=-3时对应的函数值,f()表示自变量x
22、=时对应的函数值.分别将-3,代入函数的对应法则中得f(-3),f()的值.(3)f(a)表示自变量x=a时对应的函数值,f(a-1)表示自变量x=a-1时对应的函数值.分别将a,a-1代入函数的对应法则中得f(a),f(a-1)的值.解:(1)要使函数有意义,自变量x的取值需满足解得-3≤x<-2或x>-2,即函数的定义域是[-3,-2)∪(-2,+∞).(2)f(-3)=+=-1;f()==.(3)∵a>0,∴a∈[-3,-2)∪(-2,+∞),即f(a),f(a-1)有意义.则f(a)=+;f(a-1)==.点评:
23、本题主要考查函数的定义域以及对符号f(x)的理解.求使函数有意义的自变量的取值范围,通常转化为解不等式组.f(x)是表示关于变量x的函数,又可以表示自变量x对应的函数值,是一个整体符号,分开符号f(x)没有什么意义.符号f可以看作是对“x”施加的某种法则或运算.例如f(x)=x2-x+5,当x=2时,看作“2”施加了