资源描述:
《【数学】1.2.1 函数的概念 课件1(人教a版必修1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章集合与函数概念1.2.1函数的概念设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有惟一的值与它对应,则称x是自变量,y是x的函数.1.初中学习的函数概念是什么?2.请问:我们在初中学过哪些函数?一、初中的函数时间t的变化范围是数集A={t
2、0≤t≤26},高度h的变化范围是数集B={h
3、0≤h≤845}对于数集A中的任意一个时刻t,按照对应关系h=130t-5t2,在数集B中都有惟一的高度h和它对应二、课本的实例二、课本的实例时间t的变化范围是数集A={t
4、1979≤t≤2001}面积S的变化范围是数集B={
5、S
6、0≤S≤26}对于数集A中的每一个时刻t,按照图中的曲线,在数集B中都有惟一确定的臭氧层空洞面积S和它对应.时间构成一个数集A,恩格尔系数构成一个数集B.对于数集A中的每一个时刻t,按照表中的对应值,在数集B中都有惟一确定的恩格尔系数和它对应.二、课本的实例不同点实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图象刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.共同点(1)都有两个非空数集(2)两个数集之间都有一种确定的对应关系对于数集A中的每一个x,按照某种对应关系f,在数集B中都有惟一确定的y和
7、它对应,记作f:A→B.二、课本的实例设A、B是非空数集,如果按照某种对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)
8、x∈A}叫做函数的值域.(1)y=f(x)作为一个整体,既可以用解析式表示,也可以用图象或表格表示.(2)函数y=f(x)是由三部分组成:定义域、值域和对应法则.(3)值域由定义域和对应法则惟一确定.初
9、中各类函数的对应法则、定义域、值域分别是什么?三、函数的概念二次函数一次函数反比例函数正比例函数值域定义域对应法则函数RRRRR三、函数的概念三、函数的概念判断下列对应能否表示y是x的函数(1)y=
10、x
11、(2)
12、y
13、=x(3)y=x2(4)y2=x(5)y2+x2=1(6)y2-x2=1判断下列图象能表示函数图象的是()请同学们自己试着做一做试用区间表示下列实数集合(1){x
14、5≤x<6}(2){x
15、x≥9}(3){x
16、x≤-1}∩{x
17、-5≤x<2}设a,b是两个实数,而且a
18、合叫做闭区间,表示为[a,b](2)满足不等式aa,x≤b,x19、例1已知函数实数集R使分母不等于0的实数的集合使根号内的式子大于或等于0的实数的集合使各部分式子都有意义的实数的集合(即各集合的交集)使实际问题有意义的实数的集合(3)如果y=f(x)是二次根式,则定义域是(4)如果y=f(x)是由几个部分的式子构成的,则定义域是(1)如果y=f(x)是整式,则定义域是(2)如果y=f(x)是分式,则定义域是(5)如果是实际问题,是五、例题自变量x在其定义域内任取一个确定的值时,对应的函数值用符号表示.(2)求的值(3)当时,求的值例1已知函数例2下列函数中哪个与函数y=x是同一个函数?如何判断两
20、个函数是否相同?五、例题如果两个函数的定义域相同,对应关系完全一样,则称这两个函数相等.答案:(2)与y=x是同一个函数五、例题抽象函数的定义域函数的解析式五、例题待定系数法六、课后小结2.函数的三要素定义域A值域B对应法则f定义域对应法则值域1.函数的概念:设A、B是非空数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的函数.3.会求简单函数的定义域和函数值4.理解区间是表示数集的一种方法,会把不等式转化为区间.