2019版中考数学总复习 第12讲 二次函数的图象与性质

2019版中考数学总复习 第12讲 二次函数的图象与性质

ID:41155659

大小:63.50 KB

页数:3页

时间:2019-08-17

2019版中考数学总复习 第12讲 二次函数的图象与性质_第1页
2019版中考数学总复习 第12讲 二次函数的图象与性质_第2页
2019版中考数学总复习 第12讲 二次函数的图象与性质_第3页
资源描述:

《2019版中考数学总复习 第12讲 二次函数的图象与性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019版中考数学总复习第12讲二次函数的图象与性质一、知识清单梳理知识点一:二次函数的概念及解析式关键点拨与对应举例1.二次函数的定义形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k);③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法

2、:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质3.二次函数的图象和性质图象(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:

3、画出草图,描点后比较函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7.开口向上向下对称轴x=顶点坐标增减性当x>时,y随x的增大而增大;当x<时,y随x的增大而减小.当x>时,y随x的增大而减小;当x<时,y随x的增大而增大.最值x=,y最小=.x=,y最大=.3.系数a、b、ca决定抛物线的开口方向及开口大小当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.某些特殊形式代数式的符

4、号:①a±b+c即为x=±1时,y的值;②4a±2b+c即为x=±2时,y的值.③2a+b的符号,需判断对称轴-b/2a与1的大小.若对称轴在直线x=1的左边,则-b/2a>1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.a、b决定对称轴(x=-b/2a)的位置当a,b同号,-b/2a<0,对称轴在y轴左边;当b=0时,-b/2a=0,对称轴为y轴;当a,b异号,-b/2a>0,对称轴在y轴右边.c决定抛物线与y轴的交点的位置当c>0时,抛物线与y轴的交点在正半轴上;当c=0时,抛物线

5、经过原点;当c<0时,抛物线与y轴的交点在负半轴上.b2-4ac决定抛物线与x轴的交点个数b2-4ac>0时,抛物线与x轴有2个交点;b2-4ac=0时,抛物线与x轴有1个交点;b2-4ac<0时,抛物线与x轴没有交点知识点三:二次函数的平移4.平移与解析式的关系注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式失分点警示:抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.知识

6、点四:二次函数与一元二次方程以及不等式5.二次函数与一元二次方程二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.当Δ=b2-4ac>0,两个不相等的实数根;当Δ=b2-4ac=0,两个相等的实数根;当Δ=b2-4ac<0,无实根例:已经二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两个实数根为2,1.6.抛物线y=ax2+bx+c=0在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不

7、等式ax2+bx+c>0的解集;在x二次函数与不等式轴下方的部分点的纵坐标均为负,所对应的x的值就是不等式ax2+bx+c<0的解集.知识点一:二次函数的应用关键点拨实物抛物线一般步骤若题目中未给出坐标系,则需要建立坐标系求解,建立的原则:①所建立的坐标系要使求出的二次函数表达式比较简单;②使已知点所在的位置适当(如在x轴,y轴、原点、抛物线上等),方便求二次函数丶表达式和之后的计算求解.①据题意,结合函数图象求出函数解析式;②确定自变量的取值范围;③根据图象,结合所求解析式解决问题.实际问题中求最值①分析问题中

8、的数量关系,列出函数关系式;②研究自变量的取值范围;③确定所得的函数;④检验x的值是否在自变量的取值范围内,并求相关的值;⑤解决提出的实际问题.解决最值应用题要注意两点:①设未知数,在“当某某为何值时,什么最大(最小)”的设问中,“某某”要设为自变量,“什么”要设为函数;②求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在自变量的取值范围内.结合几何图形①根据几何图形的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。