欢迎来到天天文库
浏览记录
ID:41151344
大小:20.50 KB
页数:5页
时间:2019-08-17
《中考数学 考前小题狂做 专题6 不等式(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、不等式(组)1.当0<x<1时,x2、x、的大小顺序是( )A.x2B.<x<x2C.<xD.x<x2<2.不等式组的解集是( )A.x≤1B.x≥2C.1≤x≤2D.1<x<23.不等式组的解集在数轴上表示正确的是( )A.B.C.D.4.不等式组的所有整数解是、、、、、5.不等式组的整数解的个数为( )A.0个B.2个C.3个D.无数个6.不等式组的解集是( )A.x>3B.x<3C.x<2D.x>2 7.不等式组的解集在数轴上表示正确的是( )A.B.C.D.8.不等式组的解集在数轴
2、上表示为( )A.B.C.D.9.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )A.t<B.t>C.t≤D.t≥10.不等式组的解集是()A.x>5B.x<3C.-53、,又∵x<1,∴x2、x、的大小顺序是:x2<x<.故选(A)【点评】本题主要考查了不等式,解决问题的根据是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或>.2.【考点】解一元一次不等式组.【专题】计算题.【分析】分别解两个不等式得到x≥1和x≤2,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≥1,解②得x≤2,所以不等式组的解集为1≤x≤2.故选C.【点评】本题考查了解一元一次不等式组:解一元一次不等式组4、时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.【解答】解:由①得,x≤3;由②得,x>﹣;所以,不等式组的解集为﹣<x≤3.故选A. 4.答案:A解析:考查不等式组的解法。解不等式组,得:,整数有-1.0。5.【考点】一元一次不等式组的整数解.【分析】先根据一5、元一次不等式组的解法求出x的取值范围,然后找出整数解的个数.【解答】解:解不等式2x﹣1≤1得:x≤1,解不等式﹣x<1得:x>﹣2,则不等式组的解集为:﹣2<x≤1,整数解为:﹣1,0,1,共3个.故选C.【点评】此题考查了是一元一次不等式组的整数解,解答本题的关键是根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】6、解:,解①得:x>2,解②得:x>3,则不等式的解集是:x>3.故选:A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣2,由②得,x≤3,故不等式组的解集为:﹣2<x≤3.在数轴上表示为:.故选C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小7、小找不到”的原则是解答此题的关键.8.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各选项的解集,并做出判断.【解答】解:不等式组的解集为﹣1<x≤1,A:数轴表示解集为无解,故选项A错误;B:数轴表示解集为﹣1<x≤1,故选项B正确;C:数轴表示解集为x≤﹣1,故选项C错误;D:数轴表示解集为x≥1,故选项D错误;故选B【点评】本题考查了利用数轴表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心8、还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.9.【考点】反比例函数与一次函数的交点问题.【分析】将一次函数解析式代入到反比例函数解析式中,整理得出关于x的一元二次方程,由两函数图象有两个交点,且两交点横坐标的积为负数,结合根的判别式以及根与系数的关系即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:将y=﹣x+2代入到反比例函数y=中,得:﹣x+2=,整理,得:x2﹣2
3、,又∵x<1,∴x2、x、的大小顺序是:x2<x<.故选(A)【点评】本题主要考查了不等式,解决问题的根据是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或>.2.【考点】解一元一次不等式组.【专题】计算题.【分析】分别解两个不等式得到x≥1和x≤2,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≥1,解②得x≤2,所以不等式组的解集为1≤x≤2.故选C.【点评】本题考查了解一元一次不等式组:解一元一次不等式组
4、时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.【解答】解:由①得,x≤3;由②得,x>﹣;所以,不等式组的解集为﹣<x≤3.故选A. 4.答案:A解析:考查不等式组的解法。解不等式组,得:,整数有-1.0。5.【考点】一元一次不等式组的整数解.【分析】先根据一
5、元一次不等式组的解法求出x的取值范围,然后找出整数解的个数.【解答】解:解不等式2x﹣1≤1得:x≤1,解不等式﹣x<1得:x>﹣2,则不等式组的解集为:﹣2<x≤1,整数解为:﹣1,0,1,共3个.故选C.【点评】此题考查了是一元一次不等式组的整数解,解答本题的关键是根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】
6、解:,解①得:x>2,解②得:x>3,则不等式的解集是:x>3.故选:A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣2,由②得,x≤3,故不等式组的解集为:﹣2<x≤3.在数轴上表示为:.故选C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小
7、小找不到”的原则是解答此题的关键.8.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各选项的解集,并做出判断.【解答】解:不等式组的解集为﹣1<x≤1,A:数轴表示解集为无解,故选项A错误;B:数轴表示解集为﹣1<x≤1,故选项B正确;C:数轴表示解集为x≤﹣1,故选项C错误;D:数轴表示解集为x≥1,故选项D错误;故选B【点评】本题考查了利用数轴表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心
8、还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.9.【考点】反比例函数与一次函数的交点问题.【分析】将一次函数解析式代入到反比例函数解析式中,整理得出关于x的一元二次方程,由两函数图象有两个交点,且两交点横坐标的积为负数,结合根的判别式以及根与系数的关系即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:将y=﹣x+2代入到反比例函数y=中,得:﹣x+2=,整理,得:x2﹣2
此文档下载收益归作者所有