欢迎来到天天文库
浏览记录
ID:41165229
大小:108.00 KB
页数:10页
时间:2019-08-18
《中考数学 考前小题狂做 专题13 二次函数(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数1.如图,二次函数y=ax2+bx+c(a≠0)的图像与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.则下列结论:①abc>0②9a+3b+c<0③c>-1④关于x的方程ax2+bx+c=0(a≠0)有一个根为-其中正确的结论个数有()A.1个B.2个C.3个D.4个2.已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为( )A.m=nB.m=nC.m=n2D.m=n23.二次函数y=ax2+bx+c的图象如图,反比例函数y=与正比例函
2、数y=bx在同一坐标系内的大致图象是( )A.B.C.D.4.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是( )A.①③B.①③④
3、C.②④⑤D.①③④⑤6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有( )A.1B.2C.3D.47.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是( )A.B.C.D.8.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为( )A.
4、B.C.D.9.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是( )A.1B.2C.3D.410.对于二次函数,下列说法正确的是()A、当x>0,y随x的增大而增大B、当x=2时,y有最大值-3C、图像的顶点坐标为(-2,-7)D、图像与x轴有两个交点参考答案1.【考点】二次函数图象与系数的关系,数形结合思想.【
5、分析】①由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c<0,则可对①进行判断;②当x=3时,y=ax2+bx+c=9a+3b+c>0,则可对②进行判断;③【解答】①解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,∴①正确;②当x=3时,y=ax2+bx+c=9a+3b+c>0,∴②9a+3b+c<0错误;③∵C(0,c),OA=OC,∴A(﹣c,0),由图知,A在1的左边∴﹣c<1,即c>-1∴③正确;④把-代入方程ax2
6、+bx+c=0(a≠0),得ac﹣b+1=0,把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,即ac﹣b+1=0,∴关于x的方程ax2+bx+c=0(a≠0)有一个根为-.综上,正确的答案为:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同
7、右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.2.【考点】抛物线与x轴的交点.【分析】由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c,其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,故A(﹣﹣,m),B(﹣+,m);最后,根据二次函数图象上点的坐标特征即可得出结论.【解答】解:∵抛物线y=x2+
8、bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(x1,m),B(x1+n,m),∴点A、B关于直线x=﹣对称,∴A(﹣﹣
此文档下载收益归作者所有