欢迎来到天天文库
浏览记录
ID:41149501
大小:909.51 KB
页数:19页
时间:2019-08-17
《《圆与圆的位置关系》牛继林》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、义务教育课程标准实验教科书数学九年级上册圆和圆的位置关系定西市安定区张湾中心学校:牛继林问题1:2008年我国将举办一次重大的国际体育盛会,同学们知道是什么盛会吗?问题2:同学们知道奥林匹克的标志图案是什么吗?你还能举一些生活中由圆和圆组成的图案吗?将两张半径不同的半透明圆形纸片⊙○1和⊙○2分开摆放,固定其中一张而移动另一张,你能发现⊙○1和⊙○2有几种不同的位置关系?每种位置关系中两圆有多少个公共点?活动1:○1○2○1○2(1)○2○1○2(2)○2○1○2(3)○2○1○2(5)相离:如果两个圆没有公共点,那么就说这两个圆相离外离内含相切:如果两个圆有一个公共点,那么
2、就说这两个圆相切○1○2(4)外切内切相交:如果两个圆有两个公共点,那么就说这两个圆相交。如果两圆半径相同,那么它们的位置关系有几种?你能画出这几种位置关系吗?思考:外离外切相交重合r1r2r2r2r2r1r2r1r1r1如果两个圆的半径分别为r1和r2(r1d>r1+r2=>d=r1+r2=>r2-r1d=r2-r1○1=>d3、1<<<<<○2思考:1、当两圆满足以下五种关系中的一种时,这个图形是什么对称图形?对称轴或对称中心在哪?○2○1○1○2○1○2○2○1○2○11、⊙○1和⊙○2的半径分别为3cm和4cm,如果○1○2满足下列条件,则⊙○1和⊙○2各有什么位置关系?(1)○1○2=8cm(2)○1○2=7cm(3)○1○2=5cm(4)○1○2=1cm(5)○1○2=0.5cm(6)○1和○2重合相离外切相交内切内含内含(同心圆)应用新知,尝试练习:2、如图,两个圆的圆心都在x轴上,交点为A、B,已知点A的坐标为(-2,3),则点B的坐标为_______。B○○′Axy(-2,-3)例:如4、图,⊙○的半径为5cm,点P是⊙○外一点,○P=8cm,以P为圆心作一个圆与⊙○,这个圆的半径应是多少?B○PA外切内切相切1、已知⊙○1与⊙○2的半径长是方程x2-7x+12=0的两根,且○1○2=4,则⊙○1与⊙○2的位置关系是( )A、相交B、内切C、内含D、外切A巩固练习:2、若两圆内切时圆心距为3cm,两圆外切时圆心距为8cm,则两圆的直径分别为( )A、3cm8cmB、4cm8cmC、8cm11cmD、11cm5cmD3、已知⊙○1、⊙○2、⊙○3两两外切,且半径分别为2cm,3cm,10cm,则Δ○1○2○3的形状是( )A、锐角三角形B、直角三角5、形C、钝角三角形D、等腰直角三角形B○1○2○34、如图所示,两圆轮叠靠在墙边,已知两圆轮半径分别为4和1,则它们与墙的切点A,B间的距离为( )A、3B、8C、4D、5CABO1O2C5、已知两圆的半径分别为R和r(R>r),圆心距为d,且R2+d2-r2=2dR,则两圆的位置关系为( )A、相交B、内切C、外切D、内切或外切D6、半径为13和15的两圆相交,它们的公共弦长24,则这两个圆的圆心距等于()A、4B、4或14C、14D、9或14DO1O2ABCO1O2BAC7、如果所示,已知A点坐标为(0,3),⊙A的半径为1,点B在x轴上。(1)若点B坐标为(4,0)6、,⊙B的半径为3,试判断⊙A与⊙B的位置关系;(2)若⊙B过点M(2,0),且与⊙A相切,求B点坐标。xy○AB9、如图(1),在矩形ABCD中,AB=20cm,BC=20cm,点P从A开始沿折线A-B-C-D以4m/s的速度移动,点Q从开始沿CD边以1cm/s的速度移动,如果点P,Q分别从A,C同时出发,当其中一点到达D时,另一点也随之停止运动。设运动时间为t(s).(1)t为何值时,四边形APQD为矩形?(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?ABCDPQ(1)ABCDPQ(2)(1)、通过本节课的学习,你有哪些收获和体会?(2)7、你对你本节课的表现满意吗?归纳总结:作业:1、必做题教科书第110页习题24.2第13题2、选做题教科书第109页练习第2题教科书第110页习题24.2第16题再见!
3、1<<<<<○2思考:1、当两圆满足以下五种关系中的一种时,这个图形是什么对称图形?对称轴或对称中心在哪?○2○1○1○2○1○2○2○1○2○11、⊙○1和⊙○2的半径分别为3cm和4cm,如果○1○2满足下列条件,则⊙○1和⊙○2各有什么位置关系?(1)○1○2=8cm(2)○1○2=7cm(3)○1○2=5cm(4)○1○2=1cm(5)○1○2=0.5cm(6)○1和○2重合相离外切相交内切内含内含(同心圆)应用新知,尝试练习:2、如图,两个圆的圆心都在x轴上,交点为A、B,已知点A的坐标为(-2,3),则点B的坐标为_______。B○○′Axy(-2,-3)例:如
4、图,⊙○的半径为5cm,点P是⊙○外一点,○P=8cm,以P为圆心作一个圆与⊙○,这个圆的半径应是多少?B○PA外切内切相切1、已知⊙○1与⊙○2的半径长是方程x2-7x+12=0的两根,且○1○2=4,则⊙○1与⊙○2的位置关系是( )A、相交B、内切C、内含D、外切A巩固练习:2、若两圆内切时圆心距为3cm,两圆外切时圆心距为8cm,则两圆的直径分别为( )A、3cm8cmB、4cm8cmC、8cm11cmD、11cm5cmD3、已知⊙○1、⊙○2、⊙○3两两外切,且半径分别为2cm,3cm,10cm,则Δ○1○2○3的形状是( )A、锐角三角形B、直角三角
5、形C、钝角三角形D、等腰直角三角形B○1○2○34、如图所示,两圆轮叠靠在墙边,已知两圆轮半径分别为4和1,则它们与墙的切点A,B间的距离为( )A、3B、8C、4D、5CABO1O2C5、已知两圆的半径分别为R和r(R>r),圆心距为d,且R2+d2-r2=2dR,则两圆的位置关系为( )A、相交B、内切C、外切D、内切或外切D6、半径为13和15的两圆相交,它们的公共弦长24,则这两个圆的圆心距等于()A、4B、4或14C、14D、9或14DO1O2ABCO1O2BAC7、如果所示,已知A点坐标为(0,3),⊙A的半径为1,点B在x轴上。(1)若点B坐标为(4,0)
6、,⊙B的半径为3,试判断⊙A与⊙B的位置关系;(2)若⊙B过点M(2,0),且与⊙A相切,求B点坐标。xy○AB9、如图(1),在矩形ABCD中,AB=20cm,BC=20cm,点P从A开始沿折线A-B-C-D以4m/s的速度移动,点Q从开始沿CD边以1cm/s的速度移动,如果点P,Q分别从A,C同时出发,当其中一点到达D时,另一点也随之停止运动。设运动时间为t(s).(1)t为何值时,四边形APQD为矩形?(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?ABCDPQ(1)ABCDPQ(2)(1)、通过本节课的学习,你有哪些收获和体会?(2)
7、你对你本节课的表现满意吗?归纳总结:作业:1、必做题教科书第110页习题24.2第13题2、选做题教科书第109页练习第2题教科书第110页习题24.2第16题再见!
此文档下载收益归作者所有