欢迎来到天天文库
浏览记录
ID:41127300
大小:525.04 KB
页数:10页
时间:2019-08-17
《《勾股定理》教师讲义》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《勾股定理》典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2。公式的变形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2+b2=c2,那么三角形ABC是直角三角形。这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.
2、④如果不满足条件,就说明这个三角形不是直角三角形。3、勾股数满足a2+b2=c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有:(3,4,5 )(5,12,13 )( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 ) 4、最短距离问题:主要运用的依据是两点之间线段最短。二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2.如图,以Rt△ABC的三边为直径分别向外作三个半圆,试
3、探索三个半圆的面积之间的关系.10第10页—总11页3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是()A.S1-S2=S3B.S1+S2=S3C.S2+S34、别为1cm,2cm,则斜边长为.2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是3、已知直角三角形两直角边长分别为5和12,求斜边上的高.4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A.2倍B.4倍C.6倍D.8倍5、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。6、如果直角三角形的两直角边长分别为,5、2n(n>1),那么它的斜边长是( )A、2nB、n+1C、n2-1D、7、在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.B.C.D.以上都有可能10第10页—总11页8、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( )A、24B、36C、48D、609、已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、15考点三:应用勾股定理在等腰三角形中求底边上的高例、如图1所示,等腰中,,6、是底边上的高,若,求①AD的长;②ΔABC的面积.考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题1、下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.4,5,6B.2,3,4C.11,12,13D.8,15,172、若线段a,b,c组成直角三角形,则它们的比为( )A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶73、下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=3:4:5;④△ABC中,三边长分别为8,15,17.其中是直角三角形的个数有().7、A.1个B.2个C.3个D.4个4、若三角形的三边之比为,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.不等边三角形5、已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形7、若△ABC的三边长a,b,c满足试判断△ABC的形状。10第10页—总11页8、△ABC的两边分别为5,12
4、别为1cm,2cm,则斜边长为.2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是3、已知直角三角形两直角边长分别为5和12,求斜边上的高.4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A.2倍B.4倍C.6倍D.8倍5、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。6、如果直角三角形的两直角边长分别为,
5、2n(n>1),那么它的斜边长是( )A、2nB、n+1C、n2-1D、7、在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.B.C.D.以上都有可能10第10页—总11页8、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( )A、24B、36C、48D、609、已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、15考点三:应用勾股定理在等腰三角形中求底边上的高例、如图1所示,等腰中,,
6、是底边上的高,若,求①AD的长;②ΔABC的面积.考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题1、下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.4,5,6B.2,3,4C.11,12,13D.8,15,172、若线段a,b,c组成直角三角形,则它们的比为( )A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶73、下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=3:4:5;④△ABC中,三边长分别为8,15,17.其中是直角三角形的个数有().
7、A.1个B.2个C.3个D.4个4、若三角形的三边之比为,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.不等边三角形5、已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形7、若△ABC的三边长a,b,c满足试判断△ABC的形状。10第10页—总11页8、△ABC的两边分别为5,12
此文档下载收益归作者所有