“角边角”和“角角边”判定三角形全等

“角边角”和“角角边”判定三角形全等

ID:41108174

大小:2.00 MB

页数:15页

时间:2019-08-16

“角边角”和“角角边”判定三角形全等_第1页
“角边角”和“角角边”判定三角形全等_第2页
“角边角”和“角角边”判定三角形全等_第3页
“角边角”和“角角边”判定三角形全等_第4页
“角边角”和“角角边”判定三角形全等_第5页
资源描述:

《“角边角”和“角角边”判定三角形全等》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、12.2三角形全等的判定(4课时)第3课时“角边角”和“角角边”判定三角形全等教学目标1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点难点重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.教学设计一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角

2、形全等.教学设计二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?教学设计学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“A

3、SA”)教学设计[师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;(2)画线段A′B′,使A′B′=AB;(3)分别以A′,B′为顶点,A′B′为一边作∠DA′B′,∠EB′A′,使∠DA′B′=∠CAB,∠EB′A′=∠CBA;教学设计(4)射线A′D与B′E交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△A

4、BC重叠,发现两三角形全等.[师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA”)这又是一个判定两个三角形全等的条件.2.出示探究问题:如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?教学设计教学设计例 如下图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:AD=AE.教学设计教学设计三、随堂练习1.教材第41页练习第1,2题.学生板演.2.补充练习图中的两个三角形全等吗?请说明理由.教学设计四、课堂小结有五种判定两个三角形

5、全等的方法:1.全等三角形的定义2.边边边(SSS)3.边角边(SAS)4.角边角(ASA)5.角角边(AAS)推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.教学设计在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.教学反思

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。