欢迎来到天天文库
浏览记录
ID:41101381
大小:559.10 KB
页数:55页
时间:2019-08-16
《高铁梅老师的EVIEWS教学课件第二十二章状态空间模型和卡尔曼滤波》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二十二章状态空间模型和卡尔曼滤波StateSpaceModelsandKalmanFilter上世纪60年代初,由于工程控制领域的需要,产生了卡尔曼滤波(KalmanFiltering)。进入70年代初,人们明确提出了状态空间模型的标准形式,并开始将其应用到经济领域。80年代以后,状态空间模型已成为一种有力的建模工具。许多时间序列模型,包括典型的线性回归模型和ARIMA模型都能作为特例写成状态空间的形式,并估计参数值。在计量经济学文献中,状态空间模型被用来估计不可观测的时间变量:理性预期,测量误差,长期收入,不可观测因素(
2、趋势和循环要素)。状态空间模型在经济计量学领域其他方面的大量应用请参见Hamilton(1994)和Harvey(1989)。在一般的统计模型中出现的变量都是可以观测到的,这些模型以反映过去经济变动的时间序列数据为基础,利用回归分析或时间序列分析等方法估计参数,进而预测未来的值。状态空间模型的特点是提出了“状态”这一概念。而实际上,无论是工程控制问题中出现的某些状态(如导弹轨迹的控制问题)还是经济系统所存在的某些状态都是一种不可观测的变量,正是这种观测不到的变量反映了系统所具有的真实状态,所以被称为状态向量。这种含有不可观测
3、变量的模型被称为UC模型(UnobservableComponentModel),UC模型通过通常的回归方程式来估计是不可能的,必须利用状态空间模型来求解。状态空间模型建立了可观测变量和系统内部状态之间的关系,从而可以通过估计各种不同的状态向量达到分析和观测的目的。EViews状态空间对象对单方程或多方程动态系统提供了一个直接的、易于使用的界面来建立、估计及分析方程结果。它提供了大量的建立、平滑、滤波及预测工具,帮助我们利用状态空间形式来分析动态系统。利用状态空间形式表示动态系统主要有两个优点:第一,状态空间模型将不可观测的
4、变量(状态变量)并入可观测模型并与其一起得到估计结果;其次,状态空间模型是利用强有效的递归算法——卡尔曼滤波来估计的。卡尔曼滤波可以用来估计单变量和多变量的ARMA模型、MIMIC(多指标和多因果)模型、马尔可夫转换模型以及变参数模型。§22.1状态空间模型理论及方法在本节中,我们仅就如何定义并预测一个线性状态空间模型做以简要的讨论,更为详细的内容可以查询Hamilton(1994)、Harvey(1993)。一、模型表示维向量的动态线性状态空间表示可通过下面的方程组给出:(22.1)(22.2)式中,为维不可观测的状态向量
5、,是服从于零均值正态分布的扰动向量。不可观测的状态向量假定服从于一阶向量自回归过程。我们将第一个方程称为“信号”或“量测”方程,第二个方程称为“状态”或“转移”方程。扰动向量的同一时刻的协方差矩阵为:(22.3)Zt,Tt,Ht,Qt和ct,dt被称为系统矩阵或向量。系统矩阵Zt,Tt,Ht,Qt可以依赖于一个未知参数的集合。状态空间模型的一个主要的任务就是估计这些参数,如例1和例2中MA(1)和AR(2)模型的MA和AR参数,是未知的。为了和模型中的其它参数,如ct或dt相区别,这些参数将通过向量表示,并被称为超参数
6、(Hyperparameters)。超参数确定了模型的随机性质,而在ct和dt中出现的参数仅影响确定性的可观测变量和状态的期望值。在状态空间模型中可以引入外生变量做为解释变量,也可以引入yt的延迟变量,这些都可以放到ct中去。如果ct或dt是未知参数的一个线性函数,这些参数也可以作为超参数的一部分元素。[例1]一阶移动平均模型MA(1)(22.4)通过定义状态向量可以写成状态空间形式量测方程(22.5)状态方程(22.6)这种形式的特点是不存在量测方程噪声。对于任何特殊的统计模型,状态向量的定义是由结构确定的。它的元素一般包
7、含具有实际解释意义的成分,例如趋势或季节要素。状态空间模型的目标是,所建立的状态向量包含了系统在时刻t的所有有关信息,同时又使用尽可能少的元素。所以如果状态空间模型的状态向量具有最小维数,则称为最小实现(MinimalRealization)。对一个好的状态空间模型,最小实现是一个基本准则。然而对于任一特殊问题的状态空间模型的表示形式却不是惟一的,这一点很容易验证。考虑通过定义一个任意的非奇异矩阵B,得到,为新的状态向量。用B矩阵左乘状态方程(22.2),得到(22.7)式中,,。相应的量测方程是(22.8)式中。[例2]对
8、二阶自回归模型AR(2)(22.9)考虑两个可能的状态空间形式()是(22.10)(22.11)换一种形式(22.12)[例3]由于各种各样的外界冲击和政策变化等因素的影响,经济结构不断发生变化,用OLS等固定参数模型表现不出来这种经济结构的变化,因此,需要考虑采用变参数模型(Time-v
此文档下载收益归作者所有