欢迎来到天天文库
浏览记录
ID:41061591
大小:202.97 KB
页数:13页
时间:2019-08-15
《【教学设计】《求解二元一次方程组》(数学北师大八上)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、《求解二元一次方程组》◆教材分析《求解二元一次方程组》北师大版八年级上第五章第二节内容,本节是学生在学习了一元一次方程及其解法、二元一次方程和二元一次方程组解的概念的基础上进行的二元一次方程组解法------代入法的学习,在此基础上启发学生用代入消元法解方程组,让学生体会化归的思想。二元一次方程组的求解,不仅用到了学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,又为初二学习一次函数打下牢固的基础。因此本节知识不但有着广泛的实际应用,而且在中学数学中具有承上启下的地位。◆教学目标【知识与能力目标】1.了解二元一次方程组的“消元”思想,体会学习数学
2、中的“化未知为已知”、“化复杂为简单”的化归思想.2.了解代入法的概念,掌握代入法的基本步骤.3.会用代入法求二元一次方程组的解.4.体会加减消元法形成的思路.5.了解加减消元法解二元一次方程组的一般步骤.6.掌握用加减法解二元一次方程组.【过程与方法目标】1通过探索代入法的过程,培养学生观察、思考、归纳的能力,积累数学探究活动的经验.2经历二元一次方程组一般解法的探究过程,理解加减消元法在解方程组中的作用,学会通过观察,结合方程特点选择合理的思考方向进行新知识探索.【情感态度价值观目标】1.通过探索代入法,并进一步探究二元一次方程组一般解法的过程,感受数学活动
3、充满创造性,激发学生的学习兴趣.2.通过寻求解决问题的方法,体会加减消元法形成的思路,初步形成用便捷的消元法来解题,体验“化归”的思想.◆教学重难点◆【教学重点】1.了解代入法的一般步骤,会用代入法解二元一次方程组.2.了解加减消元法的一般步骤,会用加减消元法解二元一次方程组.【教学难点】1.理解代入消元法解方程组的过程.2.辨别使用哪种方法解二元一次方程组更方便.1.◆教学过程一、情境引入内容:教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.设他们中有x个成人,y个儿童,我们得到了方程组成人和儿童到底去了多少人呢?在
4、上一节课的“做一做”中,我们通过检验是不是方程和方程的解,从而得知这个解既是的解,也是的解,根据二元一次方程组的解的定义,得出是方程组的解.所以成人和儿童分别去了5人和3人.提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?目的:“温故而知新”,培养学生养成时时回顾已有知识的习惯,并在回顾的过程中学会思考和质疑,通过质疑,自然地引出我们要研究和解决的问题.设计效果:通过对已有知识的回顾和思考,学生知识获得既感
5、到自然又倍添新奇,有跃跃欲试的心情.二、探索新知内容:回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题?(由学生独立思考解决,教师注意指导学生规范表达)解:设去了x个成人,则去了个儿童,根据题意,得:解得:将代入,解得:8-5=3.答:去了5个成人,3个儿童.在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力
6、求通过学生观察、思考与讨论后能得出以下的一些要点.)1.列二元一次方程组设有两个未知数:x个成人,y个儿童.列一元一次方程只设了一个未知数:x个成人,儿童去的个数等于去的总人数与去的成人数之差,得出个.因此y应该等于.而由二元一次方程组的一个方程,根据等式的性质可以推出.2.发现一元一次方程中与方程组中的第二个方程相类似,只需把中的“y”用“”代替就转化成了一元一次方程.教师引导学生发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识(二元一次方程组)转化为旧知识(一元一次方程)便可.(由学生来回答)上一节课我们就已知道方程组中相同的字母表示的是同
7、一个未知量.所以将中的①变形,得③,我们把代入方程②,即将②中的y用代替,这样就有.“二元”化成“一元”.教师总结:同学们很善于思考.这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.下面我们完整地解一下这个二元一次方程组.(教师把解答的详细过程板书在黑板上,并要求学生一起来完成)解:由得:.③将③代入②得:.解得:.把代入③得:.所以原方程组的解为:(提醒学生进行检验,即把求出的解代入原方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有误)下面我们试着用这种方法来解答上一节的“谁的包裹多”的问题.(放手让学生
8、用已经获取的经验去解决新
此文档下载收益归作者所有