欢迎来到天天文库
浏览记录
ID:40844648
大小:720.60 KB
页数:22页
时间:2019-08-08
《重积分的计算同济少学时》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二节一、利用直角坐标计算二重积分二、利用极坐标计算二重积分二重积分的计算法第九章且在D上连续时,由曲顶柱体体积的计算可知,若D为X-型区域则若D为Y-型区域则一、利用直角坐标计算二重积分当被积函数均非负在D上变号时,因此上面讨论的累次积分法仍然有效.由于说明:(1)若积分区域既是X-型区域又是Y-型区域,为计算方便,可选择积分序,必要时还可以交换积分序.则有(2)若积分域较复杂,可将它分成若干X-型域或Y-型域,则例1.计算其中D是直线y=1,x=2,及y=x所围的闭区域.解法1.将D看作X-型区域,则解法2.将D看作Y-型区域,则例2.计算其中D是抛物线所围成的闭区域.解:为计算简便,先对
2、x后对y积分,及直线则例3.计算其中D是直线所围成的闭区域.解:由被积函数可知,因此取D为X-型域:先对x积分不行,说明:有些二次积分为了积分方便,还需交换积分顺序.例4.交换下列积分顺序解:积分域由两部分组成:视为Y-型区域,则二、利用极坐标计算二重积分对应有在极坐标系下,用同心圆r=常数则除包含边界点的小区域外,小区域的面积在内取点及射线=常数,分划区域D为即设则特别,对此时若f≡1则可求得D的面积思考:下列各图中域D分别与x,y轴相切于原点,试答:问的变化范围是什么?(1)(2)例6.计算其中解:在极坐标系下原式的原函数不是初等函数,故本题无法用直角由于故坐标计算.例7.求球体被圆柱
3、面所截得的(含在柱面内的)立体的体积.解:设由对称性可知作业P1361(1),(3),(5),(10);4;5;6(1),(5)P1379(2);10(2);11(1),(4);12(1);13(3)(4)第三节内容小结(1)二重积分化为二次积分的方法直角坐标系情形:若积分区域为则若积分区域为则则极坐标系情形:若积分区域为(3)计算步骤及注意事项•画出积分域•选择坐标系•确定积分序•写出积分限•计算要简便域边界应尽量多为坐标线被积函数关于坐标变量易分离积分域分块要少累次积分好算为妙图示法不等式(先积一条线,后扫积分域)充分利用对称性应用换元公式思考与练习1.设且求提示:交换积分顺序后,x,y互
4、换2.交换积分顺序提示:积分域如图解:原式备用题1.给定改变积分的次序.2.计算其中D为由圆所围成的及直线解:平面闭区域.
此文档下载收益归作者所有