抽屉原理精解

抽屉原理精解

ID:40841443

大小:40.00 KB

页数:5页

时间:2019-08-08

抽屉原理精解_第1页
抽屉原理精解_第2页
抽屉原理精解_第3页
抽屉原理精解_第4页
抽屉原理精解_第5页
资源描述:

《抽屉原理精解》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第一抽屉原理原理1把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。原理2把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有m

2、n个物体,与题设矛盾,故不可能。  抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起.  将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但

3、这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。  通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计

4、抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键.例1有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗?A、3B、4C、5D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球.例2某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书?A、28B、29C、30D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉

5、原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。注:以上例题中有关“抽屉”和“苹果”的选择比较简单.但在很多情况下,“抽屉”和“苹果”并非一下子就能选好,而是要进行认真的分析与思考才能找到,有时“抽屉”和“苹果”的数目也不是现成的,需要我们通过分析,才能计算出结果例3红色,黄色,绿色的球各6个,混杂地放在一起,要想闭着眼睛从中取出颜色不同的两对球,问至少要取多少才能保证达到要求?A、6B、7C、8D、9红色、黄色、绿色的球各

6、6个,分析:这个问题不能象前面两个例题那样一下就能找到“抽屉”和“苹果”,由于各种颜色的球混合在一起,我们又是闭着眼睛取球,这样,如果取出的球数不多于6个,就有可能取出的球都是同一种颜色,这是最不利的情况,因此,要保证取出颜色不同的两对球,取出的球数必须超过6个,为了保证达到要求,我们从最坏的情况出发,取出的球中有6个都是同一种颜色,这样,问题就变成了怎样才能使余下的球中保证有两个是同颜色的.这时剩下的颜色只有两种,把两种颜色当作两只“抽屉”,而将球当作“苹果”,根据抽屉原则,只要有三个球,就能保证其中有两个是同颜色的,即在最不利的情况下,只要取出9

7、个球,就能保证其中一定有两对颜色不同的小球,在其它情况下,就更无问题了。例4一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的?A.12B.13C.15D.16分析:因为扑克牌一共有四种花色,当每次至少抽出4张牌时才可以保证每种花色一样一张,按此类推,当取到12张牌时,就可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌的同一种花色。例5从一副完整的扑克牌中至少抽出()张牌才能保证至少6张牌花色相同A、21C、22C、23D、24分析:最坏的情况,第一次抽出

8、大小王和4种不同的花色,第二次抽出四种不同的花色,连续5次这时有22张牌,再任意抽一张出来就能保证至少6张牌

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。