资源描述:
《Ch7.1参数的点估计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一节参数的点估计点估计概念求估计量的方法课堂练习小结参数估计问题的一般提法:X1,X2,…,Xn设有一个统计总体,总体的分布函数为现从该总体抽样,得样本F(x,),其中为未知参数(可以是向量).要依据该样本对参数作出估计,或估计的某个已知函数.这类问题称为参数估计.参数估计问题是利用从总体抽样得到的信息来估计总体的某些参数或者参数的某些函数.参数估计参数估计点估计区间估计(假定身高服从正态分布)设这5个数是:1.651.671.681.781.69这是区间估计.估计在区间[1.57,1.84]内,例如我们要估计某队男生的平均身高.现从该总体选取容量为5的样本,我们的任务是要根
2、据选出的样本(5个数)求出总体均值的估计.而全部信息就由这5个数组成.估计为1.68,这是点估计.一、点估计概念随机抽查100个婴儿,…得100个体重数据10,7,6,6.5,5,5.2,…呢?据此,我们应如何估计和而全部信息就由这100个数组成.例1已知某地区新生婴儿的体重,未知为估计:我们需要构造出适当的样本的函数T(X1,X2,…Xn),每当有了样本,就代入该函数中算出一个值,用来作为的估计值.T(X1,X2,…Xn)称为参数的点估计量,把样本值代入T(X1,X2,…Xn)中,估计值.得到的一个点由大数定律,自然想到把样本体重的平均值作为总体平均体重的一个估计.样本体重的
3、平均值我们知道,若,则.用样本体重的均值估计.类似地,用样本体重的方差估计.使用什么样的统计量去估计?可以用样本均值;也可以用样本中位数;还可以用别的统计量.问题是:二、寻求估计量的方法1.矩估计法2.最大似然法3.最小二乘法4.贝叶斯方法……这里我们主要介绍前面两种方法.1.矩估计法矩估计法是英国统计学家K.皮尔逊最早提出来的.由辛钦大数定理,若总体的数学期望有限,则有其中为连续函数.这表明,当样本容量很大时,在统计上,可以用用样本矩去估计总体矩.这一事实导出矩估计法.定义用样本原点矩估计相应的总体原点矩,又用样本原点矩的连续函数估计相应的总体原点矩的连续函数,这种参数点估计
4、法称为矩估计法.理论依据:大数定律矩估计法的具体做法如下:那么它的前k阶矩,一般都是这k个参数设总体的分布函数中含有k个未知参数,i=1,2,…,k从这k个方程中解出j=1,2,…,kj=1,2,…,k那么用诸的估计量Ai分别代替上式中的诸,即可得诸的矩估计量:矩估计量的观察值称为矩估计值.的函数,记为:例2设总体X在[a,b]上服从均匀分布,a,b未知.是来自X的样本,试求a,b的矩估计量.解即解得于是a,b的矩估计量为样本矩总体矩解例3设总体X的均值和方差都存在,未知.是来自X的样本,试求的矩估计量.解得于是的矩估计量为样本矩总体矩解:由矩法,样本矩总体矩从中解得的矩估计.
5、即为数学期望是一阶原点矩例3设总体X的概率密度为是未知参数,其中X1,X2,…,Xn是取自X的样本,求参的矩估计.矩法的优点是简单易行,并不需要事先知道总体是什么分布.缺点是,当总体类型已知时,没有充分利用分布提供的信息.一般场合下,矩估计量不具有唯一性.其主要原因在于建立矩法方程时,选取那些总体矩用相应样本矩代替带有一定的随意性.2.最大似然法它是在总体类型已知条件下使用的一种参数估计方法.它首先是由德国数学家高斯在1821年提出的.GaussFisher然而,这个方法常归功于英国统计学家费歇.费歇在1922年重新发现了这一方法,并首先研究了这种方法的一些性质.最大似然估计法
6、的思想最大似然估计法,是建立在最大似然原理的基础上的求点估计量的方法。最大似然原理的直观想法是:在试验中概率最大的事件最有可能出现。因此,一个试验如有若干个可能的结果A,B,C,…,若在一次试验中,结果A出现,则一般认为A出现的概率最大。最大似然估计定义:当给定样本X1,X2,…Xn时,定义似然函数为:设X1,X2,…Xn是取自总体X的一个样本,样本的联合密度(连续型)或联合分布律(离散型)为f(x1,x2,…,xn;).f(x1,x2,…,xn;)这里x1,x2,…,xn是样本的观察值.似然函数:f(x1,x2,…,xn;)最大似然估计法就是用使达到最大值的去估计.即称为的最
7、大似然估计值.而相应的统计量称为的最大似然估计量.看作参数的函数,它可作为将以多大可能产生样本值x1,x2,…,xn的一种度量.求最大似然估计量的一般步骤为:(1)求似然函数(2)一般地,求出及似然方程(3)解似然方程得到最大似然估计值(4)最后得到最大似然估计量解似然函数例5解X的似然函数为例6解例7解例这一估计量与矩估计量是相同的.最大似然估计的不变性:U.解例以及p=P(X=0)的最大似然估计量。因为是的单调函数,所以,p=P(X=0)的最大似然估计量为三、课堂练习例1设总体X的概率密