欢迎来到天天文库
浏览记录
ID:40715063
大小:288.28 KB
页数:9页
时间:2019-08-06
《Efficient and Accurate Approximations of Nonlinear Convolutional Networks英文学习资料》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、EfficientandAccurateApproximationsofNonlinearConvolutionalNetworksXiangyuZhang1∗JianhuaZou1XiangMing1∗KaimingHe2JianSun21Xi’anJiaotongUniversity2MicrosoftResearchAbstracttheoriginalfilterscanbeapproximatelydecomposedintoaseriesofsmallerfilters,andthecomplexityisreduced.Thispaperaimstoaccelera
2、tethetest-timecomputationThesemethodshaveshownpromisingspeedupratiosonaofdeepconvolutionalneuralnetworks(CNNs).Unlikeex-single[3]orafewlayers[10]withsomedegradationofistingmethodsthataredesignedforapproximatinglinearaccuracy.filtersorlinearresponses,ourmethodtakesthenonlinearThealgorithmsan
3、dapproximationsinthepreviousworkunitsintoaccount.Weminimizethereconstructionerroraredevelopedforreconstructinglinearfilters[3,10]andofthenonlinearresponses,subjecttoalow-rankconstraintlinearresponses[10].However,thenonlinearitylikethewhichhelpstoreducethecomplexityoffilters.WedevelopRectified
4、LinearUnits(ReLU)[14,11]isnotinvolvedinaneffectivesolutiontothisconstrainednonlinearoptimiza-theiroptimization.Ignoringthenonlinearitywillimpacttionproblem.Analgorithmisalsopresentedforreducingthequalityoftheapproximatedlayers.Letusconsideratheaccumulatederrorwhenmultiplelayersareapproxi-c
5、asethatthefiltersareapproximatedbyreconstructingthemated.Awhole-modelspeedupratioof4×isdemonstratedlinearresponses.BecausetheReLUwillfollow,themodelonalargenetworktrainedforImageNet,whilethetop-5er-accuracyismoresensitivetothereconstructionerroroftherorrateisonlyincreasedby0.9%.Ouraccelerat
6、edmodelpositiveresponsesthantothatofthenegativeresponses.hasacomparablyfastspeedasthe“AlexNet”[11],butisMoreover,itisachallengingtaskofacceleratingthe4.7%moreaccurate.wholenetwork(insteadofjustoneoraveryfewlayers).Theerrorswillbeaccumulatedifseverallayersareapprox-imated,especiallywhenthem
7、odelisdeep.Actually,inthe1.Introductionrecentwork[3,10]theapproximationsareappliedonasin-Thispaperaddressesefficienttest-timecomputationofglelayeroflargeCNNmodels,suchasthosetrainedondeepconvolutionalneuralnetworks(CNNs)[12,11].SinceImageNet[2,16].Itisinsufficie
此文档下载收益归作者所有