Efficient and Accurate Approximations of Nonlinear Convolutional Networks英文学习资料

Efficient and Accurate Approximations of Nonlinear Convolutional Networks英文学习资料

ID:40715063

大小:288.28 KB

页数:9页

时间:2019-08-06

Efficient and Accurate Approximations of Nonlinear Convolutional Networks英文学习资料_第1页
Efficient and Accurate Approximations of Nonlinear Convolutional Networks英文学习资料_第2页
Efficient and Accurate Approximations of Nonlinear Convolutional Networks英文学习资料_第3页
Efficient and Accurate Approximations of Nonlinear Convolutional Networks英文学习资料_第4页
Efficient and Accurate Approximations of Nonlinear Convolutional Networks英文学习资料_第5页
资源描述:

《Efficient and Accurate Approximations of Nonlinear Convolutional Networks英文学习资料》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、EfficientandAccurateApproximationsofNonlinearConvolutionalNetworksXiangyuZhang1∗JianhuaZou1XiangMing1∗KaimingHe2JianSun21Xi’anJiaotongUniversity2MicrosoftResearchAbstracttheoriginalfilterscanbeapproximatelydecomposedintoaseriesofsmallerfilters,andthecomplexityisreduced.Thispaperaimstoaccelera

2、tethetest-timecomputationThesemethodshaveshownpromisingspeedupratiosonaofdeepconvolutionalneuralnetworks(CNNs).Unlikeex-single[3]orafewlayers[10]withsomedegradationofistingmethodsthataredesignedforapproximatinglinearaccuracy.filtersorlinearresponses,ourmethodtakesthenonlinearThealgorithmsan

3、dapproximationsinthepreviousworkunitsintoaccount.Weminimizethereconstructionerroraredevelopedforreconstructinglinearfilters[3,10]andofthenonlinearresponses,subjecttoalow-rankconstraintlinearresponses[10].However,thenonlinearitylikethewhichhelpstoreducethecomplexityoffilters.WedevelopRectified

4、LinearUnits(ReLU)[14,11]isnotinvolvedinaneffectivesolutiontothisconstrainednonlinearoptimiza-theiroptimization.Ignoringthenonlinearitywillimpacttionproblem.Analgorithmisalsopresentedforreducingthequalityoftheapproximatedlayers.Letusconsideratheaccumulatederrorwhenmultiplelayersareapproxi-c

5、asethatthefiltersareapproximatedbyreconstructingthemated.Awhole-modelspeedupratioof4×isdemonstratedlinearresponses.BecausetheReLUwillfollow,themodelonalargenetworktrainedforImageNet,whilethetop-5er-accuracyismoresensitivetothereconstructionerroroftherorrateisonlyincreasedby0.9%.Ouraccelerat

6、edmodelpositiveresponsesthantothatofthenegativeresponses.hasacomparablyfastspeedasthe“AlexNet”[11],butisMoreover,itisachallengingtaskofacceleratingthe4.7%moreaccurate.wholenetwork(insteadofjustoneoraveryfewlayers).Theerrorswillbeaccumulatedifseverallayersareapprox-imated,especiallywhenthem

7、odelisdeep.Actually,inthe1.Introductionrecentwork[3,10]theapproximationsareappliedonasin-Thispaperaddressesefficienttest-timecomputationofglelayeroflargeCNNmodels,suchasthosetrainedondeepconvolutionalneuralnetworks(CNNs)[12,11].SinceImageNet[2,16].Itisinsufficie

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。