欢迎来到天天文库
浏览记录
ID:40722480
大小:2.55 MB
页数:9页
时间:2019-08-06
《Octree Generating Networks_ Efficient Convolutional Architectures for High-Resolution 3D Outputs》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、OctreeGeneratingNetworks:EfficientConvolutionalArchitecturesforHigh-resolution3DOutputsMaximTatarchenko1AlexeyDosovitskiy1,2ThomasBrox1tatarchm@cs.uni-freiburg.deadosovitskiy@gmail.combrox@cs.uni-freiburg.de1UniversityofFreiburg2IntelLabsAbstractOctreeOctreeOctreedenselevel1level2level3Weprese
2、ntadeepconvolutionaldecoderarchitecturethatcangeneratevolumetric3Doutputsinacompute-andmemory-efficientmannerbyusinganoctreerepresentation.Thenetworklearnstopredictboththestructureoftheoc-tree,andtheoccupancyvaluesofindividualcells.Thismakesitaparticularlyvaluabletechniqueforgenerating32364312
3、833Dshapes.Incontrasttostandarddecodersactingonreg-Figure1.TheproposedOGNrepresentsitsvolumetricoutputasanularvoxelgrids,thearchitecturedoesnothavecubiccom-octree.Initiallyestimatedroughlow-resolutionstructureisgradu-plexity.Thisallowsrepresentingmuchhigherresolutionallyrefinedtoadesiredhighre
4、solution.Ateachlevelonlyasparseoutputswithalimitedmemorybudget.Wedemonstratethissetofspatiallocationsispredicted.Thisrepresentationissignifi-inseveralapplicationdomains,including3Dconvolutionalcantlymoreefficientthanadensevoxelgridandallowsgeneratingautoencoders,generationofobjectsandwholescene
5、sfromvolumesaslargeas5123voxelsonamodernGPUinasinglefor-high-levelrepresentations,andshapefromasingleimage.wardpass.largecellofanoctree,resultinginsavingsincomputation1.Introductionandmemorycomparedtoafineregulargrid.Atthesametime,finedetailsarenotlostandcanstillberepresentedbyUp-convolutional1
6、decoderarchitectureshavebecomesmallcellsoftheoctree.astandardtoolfortasksrequiringimagegeneration[9,Wepresentanoctreegeneratingnetwork(OGN)-acon-27,20]orper-pixelprediction[25,8].Theyconsistofvolutionaldecoderoperatingonoctrees.Thecoarsestruc-aseriesofconvolutionalandup-convolutional(upsam-tu
7、reofthenetworkisillustratedinFigure1.Similartoapling+convolution)layersoperatingonregulargrids,withusualup-convolutionaldecoder,therepresentationisgrad-resolutiongraduallyincreasingtowardstheoutputoftheuallyconvolvedwithlearnedfiltersandup-sam
此文档下载收益归作者所有