Octree Generating Networks_ Efficient Convolutional Architectures for High-Resolution 3D Outputs

Octree Generating Networks_ Efficient Convolutional Architectures for High-Resolution 3D Outputs

ID:40722480

大小:2.55 MB

页数:9页

时间:2019-08-06

Octree Generating Networks_ Efficient Convolutional Architectures for High-Resolution 3D Outputs_第1页
Octree Generating Networks_ Efficient Convolutional Architectures for High-Resolution 3D Outputs_第2页
Octree Generating Networks_ Efficient Convolutional Architectures for High-Resolution 3D Outputs_第3页
Octree Generating Networks_ Efficient Convolutional Architectures for High-Resolution 3D Outputs_第4页
Octree Generating Networks_ Efficient Convolutional Architectures for High-Resolution 3D Outputs_第5页
资源描述:

《Octree Generating Networks_ Efficient Convolutional Architectures for High-Resolution 3D Outputs》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、OctreeGeneratingNetworks:EfficientConvolutionalArchitecturesforHigh-resolution3DOutputsMaximTatarchenko1AlexeyDosovitskiy1,2ThomasBrox1tatarchm@cs.uni-freiburg.deadosovitskiy@gmail.combrox@cs.uni-freiburg.de1UniversityofFreiburg2IntelLabsAbstractOctreeOctreeOctreedenselevel1level2level3Weprese

2、ntadeepconvolutionaldecoderarchitecturethatcangeneratevolumetric3Doutputsinacompute-andmemory-efficientmannerbyusinganoctreerepresentation.Thenetworklearnstopredictboththestructureoftheoc-tree,andtheoccupancyvaluesofindividualcells.Thismakesitaparticularlyvaluabletechniqueforgenerating32364312

3、833Dshapes.Incontrasttostandarddecodersactingonreg-Figure1.TheproposedOGNrepresentsitsvolumetricoutputasanularvoxelgrids,thearchitecturedoesnothavecubiccom-octree.Initiallyestimatedroughlow-resolutionstructureisgradu-plexity.Thisallowsrepresentingmuchhigherresolutionallyrefinedtoadesiredhighre

4、solution.Ateachlevelonlyasparseoutputswithalimitedmemorybudget.Wedemonstratethissetofspatiallocationsispredicted.Thisrepresentationissignifi-inseveralapplicationdomains,including3Dconvolutionalcantlymoreefficientthanadensevoxelgridandallowsgeneratingautoencoders,generationofobjectsandwholescene

5、sfromvolumesaslargeas5123voxelsonamodernGPUinasinglefor-high-levelrepresentations,andshapefromasingleimage.wardpass.largecellofanoctree,resultinginsavingsincomputation1.Introductionandmemorycomparedtoafineregulargrid.Atthesametime,finedetailsarenotlostandcanstillberepresentedbyUp-convolutional1

6、decoderarchitectureshavebecomesmallcellsoftheoctree.astandardtoolfortasksrequiringimagegeneration[9,Wepresentanoctreegeneratingnetwork(OGN)-acon-27,20]orper-pixelprediction[25,8].Theyconsistofvolutionaldecoderoperatingonoctrees.Thecoarsestruc-aseriesofconvolutionalandup-convolutional(upsam-tu

7、reofthenetworkisillustratedinFigure1.Similartoapling+convolution)layersoperatingonregulargrids,withusualup-convolutionaldecoder,therepresentationisgrad-resolutiongraduallyincreasingtowardstheoutputoftheuallyconvolvedwithlearnedfiltersandup-sam

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。