Boda-RTC - Productive Generation of Portable Efficient Code for Convolutional Neural Networks on Mobile Computing Platforms

Boda-RTC - Productive Generation of Portable Efficient Code for Convolutional Neural Networks on Mobile Computing Platforms

ID:40708090

大小:1.25 MB

页数:10页

时间:2019-08-06

Boda-RTC - Productive Generation of Portable Efficient Code for Convolutional Neural Networks on Mobile Computing Platforms_第1页
Boda-RTC - Productive Generation of Portable Efficient Code for Convolutional Neural Networks on Mobile Computing Platforms_第2页
Boda-RTC - Productive Generation of Portable Efficient Code for Convolutional Neural Networks on Mobile Computing Platforms_第3页
Boda-RTC - Productive Generation of Portable Efficient Code for Convolutional Neural Networks on Mobile Computing Platforms_第4页
Boda-RTC - Productive Generation of Portable Efficient Code for Convolutional Neural Networks on Mobile Computing Platforms_第5页
资源描述:

《Boda-RTC - Productive Generation of Portable Efficient Code for Convolutional Neural Networks on Mobile Computing Platforms》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Boda-RTC:ProductiveGenerationofPortable,EfficientCodeforConvolutionalNeuralNetworksonMobileComputingPlatformsMatthewW.MoskewiczForrestN.IandolaKurtKeutzerUniversityofCalifornia,Berkeley{moskewcz,forresti,keutzer}@eecs.berkeley.eduAbstract—Thepopularityofneuralnetworks(NNs)spansanddeplo

2、ymentofsystemsthatincludeNNs,itisdesirabletoacademia[1],industry[2],andpopularculture[3].Inparticular,nurtureadiverseenablingecosystemoftoolsandapproaches.convolutionalneuralnetworks(CNNs)havebeenappliedtomanyInparticular,wefeelitisdesirabletosupportmanyhardwareimagebasedmachinelearni

3、ngtasksandhaveyieldedstrongandsoftwareplatformstoenablenewapplicationsacrossresults[4].Theavailabilityofhardware/softwaresystemsforefficienttraininganddeploymentoflargeand/ordeepCNNmanyareas,includingmobile,IoT,transportation,medical,modelsiscriticalforthecontinuedsuccessofthefield[5][1

4、].andothers.Imaginethat,foragiventask,high-performanceEarlysystemsforNNcomputationfocusedonleveragingexistingvendorlibrariesexistforatleastoneplatform.Currently,fordenselinearalgebratechniquesandlibraries[6][7].CurrentCNNs,thevendorisNvidia,theplatformisMaxwell,andapproachesuselow-lev

5、elmachinespecificprogramming[8]thelibraryiscuDNN[9].Whynotsimplyusethatvendor’sand/orclosed-source,purpose-builtvendorlibraries[9].Inthiswork,wepresentanopensourcesystemthat,comparedtoplatformandlibrariesforthetaskandbesatisfied?Oneissueexistingapproaches,achievescompetitivecomputationa

6、lspeedisquitesimple:inindustrialusecases,choiceofplatformmaywhileachievingsignificantlygreaterportability.Weachievethisbedictatedbybusinessconcerns.Further,thosesamebusinessbytargetingthevendor-neutralOpenCLplatform[10]usingaconcernsmayprecludedependenceonanysinglevendor.Forcode-genera

7、tionapproach.Wearguethatourapproachallowsexample,theflagshipSamsungGalaxyS7mobilephoneshipsforboth:(1)therapiddevelopmentofnewcomputationalkernelsforexistinghardwaretargets,and(2)therapidtuningofexistingintwoversions:oneusingaSamsung-proprietaryExynoscomputationalkernelsfornewhardwaret

8、arget

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。