资源描述:
《分层抽样与系统抽样》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2分层抽样与系统抽样一个单位的职工有500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?思考:1.分层抽样的概念一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样2.分层抽样的操作步骤(1)将总体按一定标准进行分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的比确定各层应抽取的样本容量;(4)在每一层进行
2、抽样(可用简单随机抽样或系统抽样)3.分层抽样的特点(1)适用于总体由差异明显的几部分组成的情况;(2)更充分的反映了总体的情况;(3)等可能抽样;某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?思考:系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。(1)当总体容量N较大时,采用系统抽样。(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要
3、求相等。因此,系统抽样又称等距抽样,这时间隔一般为k=[].(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。Nn系统抽样的特征:系统抽样的步骤:(1)采用随机抽样的方法将总体中的N个个体编号。(2)将整体按编号进行分段,确定分段间隔k(k∈N).(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k)。(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+K,再加上K得到第3个个体编号L+2K,这样继续下去,直到获取整个样本。三种抽样方法的比较例1:一批电视机中,有海信厂生产的
4、56台,长虹厂生产的42台,用分层抽样的方法从中抽出一个容量为14的样本.例题例2某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样例3在下列问题中,各采用什么抽样方法抽取样本较为合适?(1)从20台彩电中抽取4台进行质量检查;(2)科学会堂有32排座位,每排有40个座位(座位号为01~40),一次报告会坐满了听众,会后为了听取意见,留下了座位号为18的所有32名听众进行座谈;(3)实验中学有180名教工,其中有专职教师144名,
5、管理人员12名,后勤服务人员24名,今从中抽取一个容量为15的样本.例4某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为A.15,5,25B.15,15,15C.10,5,30D15,10,20[分析]因为300:200:400=3:2:4,于是将45分成3:2:4的三部分。设三部分各抽取的个体数分别为3x,2x,4x,由3x+2x+4x=45,得x=5,故高一、高二、高三各年级抽取的人数分别为15,10,20,故选D。例5一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:
6、5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程。[分析]采用分层抽样的方法。解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层。(2)按照样本容量的比例随机抽取各乡镇应抽取的样本。300×3/15=60(人),300×2/15=100(人),300×2/15=40(人),300×2/15=60(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60人。(3)将300人组到一起,
7、即得到一个样本。