资源描述:
《对数函数及其性质运算》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高一数学多媒体课堂对数函数xyo对数函数的图象和性质比较两个对数值的大小对数函数的定义学习要求一、复习:1.对数的概念:2.指数函数的定义:如果ax=N,那么数x叫做以a为底N的对数,记作logaN=x(a>0,a≠1).函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.某种细胞分裂时,由一个分裂成2个,由2个分成4个….一个这样的细胞分裂x次以后.得到的细胞个数y与分裂次数x的函数关系式可表示为()如果把这个函数表示成对数的形式应为()如果用x表示自变量,y表示函数,那么这个函数应为().y=2xy=log2xx=log2y回忆学习指数函数时用的实例即细
2、胞分裂的次数x也是细胞个数y的函数一般地函数y=logax(a>0,且a≠1)叫做对数函数.其中x是自变量,函数的定义域是(0,+∞).对数函数的定义:作对数图像的三个步骤:一、列表(根据给定的自变量分别计算出应变量的值)二、描点(根据列表中的坐标分别在坐标系中标出其对应点)三、连线(将所描的点用平滑的曲线连接起来)对数函数图像的作法:点击进入几何画板x1/41/2124…y=log2x-2-1012…列表描点作y=log2x图像连线xyoy=logax与y=的图象关于________对称.x轴1y=logax=-logax函数y=f(x)与函数y=-f(x)的图象关于x轴对称函数y=
3、logax(a>0且a≠1)底数a>10<a<1图象定义域值域定点值分布单调性趋势对数函数的图象与性质:1xyo1xyo(0,+∞)RR(0,+∞)(1,0)(1,0)当x>1时,y>0当0<x<1时,y<0当x>1时,y<0当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数底数越大,图象越靠近x轴底数越小,图象越靠近x轴例1.求下列函数的定义域:y=logax2(2)y=loga(4-x)(3)y=loga(9-x2)(4)y=logx(4-x)定义域:(-∞,4)定义域:(-3,3)定义域:(0,1)∪(1,4)讲解范例(5)求函数的定义域.解:要使函数有意义,
4、必有4x-3>0,log0.5(4x-3)≥0.即4x>3,4x-3≤1.所以所求函数的定义域为{x
5、}.分析:由对数函数的定义域得:例2:选择题.(1)函数y=的定义域是()(2)函数y=的定义域是()D分析:由函数的定义域得:A2、下列不等式中正确的是()练习A、6B、8C、9D、111、已知函数,则f(10)=()B分析:0+8=8①已知f(x),求f(a),直接代入法。②C4、函数的图象与x轴的交点是()3、函数的定义域是()A(-∞,2)B(1,2)C(1,2]D(2,+∞)A(11,0)B(10,0)C(2,0)D(1,0)BC分析:要使函数有意义,必须满足:分析:由题意得
6、:练习例2求下列函数的定义域分析:注意函数特点,应用对数函数单调性解决.例2.比较下列各组数中两个值的大小:(1)log23.4,log28.5;⑵log0.31.8,log0.32.7;⑶loga5.1,loga5.9(a>0,a≠1).解⑴考察对数函数y=log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数.因为3.4<8.5,于是log23.4<log28.5;⑵因为函数y=log0.3x在(0,+∞)上是减函数,且1.8<2.7,所以log0.31.8>log0.32.7.解:①当a>1时,函数y=logax在(0,+∞)上是增函数,于是loga5.1<loga5.9
7、;②当0<a<1时,函数y=logax在(0,+∞)上是减函数,于是loga5.1>loga5.9.⑶loga5.1,loga5.9(a>0,a≠1)注:例2是利用对数函数的增减性比较两个对数的大小的,对底数与1的大小关系未明确指出时,要分情况对底数进行讨论来比较两个对数的大小.分析:对数函数的增减性决定于对数的底数是大于1还是小于1.而已知条件中并未指出底数a与1哪个大,因此需要对底数a进行讨论:练习1:比较下列各题中两个值的大小:⑴log106log108⑵log0.56log0.54⑶log0.10.5log0.10.6⑷log1.51.6log1.51.4<<>>练习2:已知下
8、列不等式,比较正数m,n的大小:(1)log3mlog0.3n(3)logamlogan(a>1)答案:(1)mn(4)m>n例2.比较下列各组中两个值的大小:(4)log67,log76;(5)log3π,log20.8.(1)解:∵log67>log66=1,log76<log77=1,∴log67>log76;(2)解:∵log3π>l