时间序列分析方法 第03章 平稳ARMA模型

时间序列分析方法 第03章 平稳ARMA模型

ID:40289370

大小:685.50 KB

页数:15页

时间:2019-07-30

时间序列分析方法 第03章 平稳ARMA模型_第1页
时间序列分析方法 第03章 平稳ARMA模型_第2页
时间序列分析方法 第03章 平稳ARMA模型_第3页
时间序列分析方法 第03章 平稳ARMA模型_第4页
时间序列分析方法 第03章 平稳ARMA模型_第5页
资源描述:

《时间序列分析方法 第03章 平稳ARMA模型》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、时间序列分析方法讲义第3章平稳ARMA模型第三章平稳ARMA过程一元ARMA模型是描述时间序列动态性质的基本模型。通过介绍ARMA模型,可以了解一些重要的时间序列的基本概念,并且为描述单变量时间序列的动态性质提供一类十分有用的模型。§3.1预期、平稳性和遍历性3.1.1预期和随机过程假设可以观察到一个样本容量为的随机变量的样本:这意味着这些随机变量之间的是相互独立且同分布的。例3.1假设个随机变量的集合为:,且相互独立,我们称其为高斯白噪声过程产生的样本。对于一个随机变量而言,它是t时刻的随机变量,因此即使在t时刻实验,它也可以具有不同的取值,假设进行多次试验,其方式可能是

2、进行多次整个时间序列的试验,获得I个时间序列:,,…,将其中仅仅是t时刻的观测值抽取出来,得到序列:,这个序列便是对随机变量在t时刻的I次观测值,也是一种简单随机子样。定义3.1假设随机变量是定义在相同概率空间上的随机变量,则称随机变量集合为随机过程。例3.2假设随机变量的概率密度函数为:此时称此时密度为该过程的无条件密度,此过程也称为高斯过程或者正态过程。定义3.2可以利用各阶矩描述随机过程的数值特征:(1)随机变量的数学期望定义为(假设积分收敛):(3.1)此时它是随机样本的概率极限:(3.2)(2)随机变量的方差定义为(假设积分收敛):(3.3)例3.3几种重要类型的

3、随机过程1)假设是一个高斯白噪声过程,随机过程为常数加上高斯白噪声过程:则它的均值和方差分别为:(2)随机过程为时间的线性趋势加上高斯白噪声过程:15时间序列分析方法讲义第3章平稳ARMA模型则它的均值和方差分别为:3.1.2随机过程的自协方差函数将j个时间间隔的随机变量构成一个随机向量,通过随机试验可以获得该随机向量的简单随机样本。假设函数为随机向量的联合概率分布密度,则可以类似地定义:定义3.3随机过程的自协方差定义为:(3.4)上述协方差可以利用联合概率分布密度求解:其实上述协方差计算可以仅仅涉及到的联合分布即可,如此计算是为了保持时间的连续性。对于获得的抽样样本,可

4、以利用样本协方差的概率极限获得的估计:(3.5)注意到协方差是方差的推广,因此协方差比较全面地描述了随机过程的二阶矩的性质。3.1.3平稳性时间序列表示了一类随机变量在不同时点上的性质,也体现了不同时点之间的关联,那么平稳性是描述时间序列动态结构性质的重要概念。定义3.4假设随机过程的均值函数和协方差函数都与时间无关,则称此过程是协方差平稳过程,也称为弱平稳过程(covariancestationaryorweaklystationaryprocess)。此时对任意时间和任意的间隔有:例3.4几种重要随机过程的平稳性(1)假设随机过程为常数加上高斯白噪声过程:则它的均值和方

5、差与时间无关,因此该过程是协方差平稳过程。(2)假设随机过程为时间的线性趋势加上高斯白噪声过程:则它的均值为:它依赖时间,因此它不是协方差平稳过程。由于协方差平稳过程仅仅依赖时间间隔,因此有:15时间序列分析方法讲义第3章平稳ARMA模型根据自协方差的定义,可以得到自协方差对称性的结论:(3.6)与平稳性有关的更强的约束是所谓的严平稳条件,由下述定义给出:定义3.5假设随机过程满足条件:对于任意正整数值,随机向量的联合概率分布只取决于时间间隔,而不依赖时间,则称该过程是严格平稳过程,简称为严平稳过程(strictstationaryprocess)。如果一个随机过程是严平稳

6、过程,而且具有有限的二阶矩,则该过程一定是协方差平稳过程,即宽平稳过程。但是,一个宽平稳过程却不一定是严平稳过程。例3.5假设随机过程是具有高斯分布的高斯过程,如果该过程是宽平稳过程,则此过程一定是严平稳过程。3.1.4遍历性遍历性是时间序列中非常重要的。对于时间序列而言,我们可以得到一个随着时间顺序的样本观测值:,对此可以得到一个时间平均值:(3.7)定义3.6假设时间序列是一个平稳过程,如果时间平均值按照概率收敛到母体平均值,则称该随机过程是关于均值遍历的(ergodicforthemean)。关于均值遍历的要求是:(3.8)遍历性是平稳时间序列非常重要的一个性质,需要

7、认真思考和理解遍历性的含义。如果一个平稳时间序列是遍历的,那么它在每个时点上的样本矩性质(均值和协方差等)就可以在不同时点上的样本中体现出来。这就是遍历性的含义。定理3.1假设时间序列是一个协方差平稳过程,如果它的自协方差函数满足:(3.9)则该随机过程是关于均值遍历的。上述定理的证明和解释可以参见第7章的有关内容。定义3.6假设时间序列是一个协方差平稳过程,如果样本协方差按照概率收敛到总体协方差,即(3.10)则称该过程是关于二阶矩遍历的。高阶矩遍历意味着过程不同时间上的统计性质更接近同一时点上的随机抽样性质。高

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。