欢迎来到天天文库
浏览记录
ID:40250064
大小:66.01 KB
页数:6页
时间:2019-07-29
《有理数乘方概念》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、有理数乘方22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2与7叫做底数(base),2与3叫做指数(exponent)。这种求n个相同因数a的积运算叫做乘方(power),乘方的结果叫做幂(power),a叫做底数(basenumber),n叫指数(exponent)。任何数的0次方都是1,例:3º=1(注:0º无意义)有理数乘方同底数幂法则同底数幂相乘除,原来的底数作底数,指数的和或差作指数。推导:设a^m*a^n中,m=2,n=4,那么a^2*a^4=(a*a)*(a*a*a*a)=a*a*a*a*a*a=a^6=a^(2+4)所
2、以代入:a^m*a^n=a^(m+n)用字母表示为:a^m·a^n=a^(m+n)或a^m÷a^n=a^(m-n)(m、n均为自然数)1)15^2×15^3;2)3^2×3^4×3^8;3)5×5^2×5^3×5^4×…×5^901)15^2×15^3=15^(2+3)=15^52)3^2×3^4×3^8=3^(2+4+8)=3^143)5×5^2×5^3×5^4×…×5^90=5^(1+2+3+…+90)=5^4095[1]有理数乘方正整数指数幂法则a^k=a*a*....*a(k个a),其中k∈N*(即k为正整数)有理数乘方指数为0幂法则a^0=1,其中a≠0,k∈N*推导:a^0
3、=a^(1-1)=(a^1)/(a^1)=a/a=1有理数乘方负整数指数幂法则a^(-k)=1/(a^k),其中a≠0,k∈N*推导:a^(-k)=a^(0-k)=(a^0)/(a^k)=1/(a^k)[2]有理数乘方正分数指数幂法则a^(m/n)=,其中n≠0,m/n>0,m,n∈N*(即m,n为正整数)有理数乘方负分数指数幂法则a^[-(m/n)]=,其中,a^m≠0(≠0,a≠0),m/n>0,n≠0,m,n∈N*推导:a^[-(m/n)]=a^(0-m/n)=(a^0)/[a^(m/n)]=1/[a^(m/n)]=1/=分数指数幂时,当n=2k,k∈N*,且a^m<0时,则该数
4、在实数范围内无意义特别地,0的非正数指数幂没有意义有理数乘方平方差两数和乘两数差等于它们的平方差。用字母表示为:(a+b)(a-b)=a^2-b^2推导:(a+b)(a-b)=(a+b)a-(a+b)b=(a^2+ab)-(b^2+ab)=a^2-b^2[3]有理数乘方幂的乘方法则幂的乘方,底数不变,指数相乘。用字母表示为:(a^m)^n=a^(m×n)幂的乘方特别指出:a^m^n=a^(m^n)有理数乘方积的乘方积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。用字母表示为:(a×b)^n=a^n×b^n这个积的乘方法则也适用于三个以上乘数积的乘方。如:(a×b×c)^n=a
5、^n×b^n×c^n有理数乘方同指数幂乘法同指数幂相乘,指数不变,底数相乘。用字母表示为:(a^n)*(b^n)=(ab)^n有理数乘方完全平方两数和(或差)的平方,等于它们的平方的和加上(或者减去)它们的积的2倍。用字母表示为:(a+b)^2=a^2+2ab+b^2或(a-b)^2=a^2-2ab+b^2我们一般把前者叫作完全平方公式,把后者叫作完全平方差公式。有理数乘方立方和a^3+b^3=(a+b)(a^2-ab+b^2)有理数乘方立方差a^3-b^3=(a-b)(a^2+ab+b^2)[4]有理数乘方多项式平方(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac有
6、理数乘方二项式艾萨克·牛顿发现了二项式。二项式是乘方里的复杂运算。右图为二项式计算法则。一般来说,二项式也可以这样表示:11112113311464115101051………………这就是著名的杨辉三角。有理数乘方速算有些较特殊的数的平方,掌握规律后,可以使计算速度加快,现介绍如下。由n个1组成的数的平方我们观察下面的例子。1^2=111^2=121111^2=123211111^2=123432111111^2=123454321111111^2=12345654321……由以上例子可以看出这样一个规律;求由n个1组成的数的平方,先由1写到n,再由n写到1,即:11…1(n个1)^2=1
7、234…(n-1)n(n-1)…4321注意:其中n只占一个数位,满10应向前进位,当然,这样的速算不宜位数过多。由n个3组成的数的平方我们仍观察具体实例:3^2=933^2=1089333^2=1108893333^2=1110888933333^2=1111088889由此可知:33…3(n个3)^2=11…11【(n-1)个1】088…88【(n-1)个8】9个位是5的数的平方把a看作10的个数,这样个位数字是5的数的平方可以写成;(10
此文档下载收益归作者所有