求曲线的方程教案

求曲线的方程教案

ID:40145716

大小:59.02 KB

页数:5页

时间:2019-07-23

求曲线的方程教案_第1页
求曲线的方程教案_第2页
求曲线的方程教案_第3页
求曲线的方程教案_第4页
求曲线的方程教案_第5页
资源描述:

《求曲线的方程教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2.1.2求曲线的方程一、教学目标:1.知识技能目标:(1)理解坐标法的作用和意义.(2)掌握求曲线方程的常用方法和步骤,能根据条件,选择适当的坐标系和方法求曲线方程.2.过程性目标:(1)通过学生积极参与,亲身参与曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.(2)通过自主探索、合作交流,学生历经从特殊到一般,再到特殊的认知模式,完善认知结构.(3)通过层层深入,培养学生发散思维能力,深化对曲线方程本质的理解.3.情感、态度与价值观目标:(1)通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的喜悦,体会数学的严谨与

2、理性,逐步养成质疑的科学精神.(2)通过每个题目做完后的反思小结,让学生体会一题一结的模式,感悟到反思的乐趣.二、教学重点、难点:重点:求曲线方程的步骤、方法.难点:(1)如何根据条件建立恰当坐标系;(2)如何从形成曲线的几何条件中寻找等量关系.(3)如何选择恰当的方法将几何等量关系转化为曲线的方程.三、教学方法:探究发现教学法和多媒体辅助教学四、课型:新授课.五、教学过程:Ⅰ.复习回顾:师:上一节,我们已经建立了曲线的方程.方程的曲线的概念.利用这两个重要概念,就可以借助于坐标系,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x,y)

3、所满足的方程f(x,y)=0表示曲线,通过研究方程的性质间接地来研究曲线的性质.这一节,我们就来学习这一方法.Ⅱ.讲授新课1.解析几何与坐标法:我们把借助于坐标系研究几何图形的方法叫做坐标法.在数学中,用坐标法研究几何图形的知识形成了一门叫解析几何的学科.因此,解析几何是用代数方法研究几何问题的一门数学学科.2.平面解析几何研究的主要问题:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质.说明:本节主要讨论求解曲线方程的一般步骤.例1设A、B两点的坐标是(-1,-1),(3,7),求线段AB的垂直平分线的方程.解:设M(x,y)是线

4、段AB的垂直平分线上任意一点(图7—29),也就是点M属于集合.由两点间的距离公式,点M所适合条件可表示为:将上式两边平方,整理得:x+2y-7=0①我们证明方程①是线段AB的垂直平分线的方程.(1)由求方程的过程可知,垂直平分线上每一点的坐标都是方程①解;(2)设点M1的坐标(x1,y1)是方程①的解,即x+2y1-7=0x1=7-2y1点M1到A、B的距离分别是即点M1在线段AB的垂直平分线上.由(1)、(2)可知方程①是线段AB的垂直平分线的方程.师:由上面的例子可以看出,求曲线(图形)的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x,

5、y)表示曲线上任意一点M的坐标;(2)写出适合条件P的点M的集合P={M

6、P(M)};(3)用坐标表示条件P(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.说明:一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明.另外,根据情况,也可以省略步骤(2),直接列出曲线方程.练习:已知点M与x轴的距离和点M与点F(0,4)的距离相等,求点M的轨迹方程.师:下面我们通过例子来进一步熟悉求曲线轨迹的一般步骤.例2已知一条曲线在x轴的上方,它上面的每一点

7、到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.解:如图所示,设点M(x,y)是曲线上任意一点,MB⊥x轴,垂足是B,那么点M属于集合由距离公式,点M适合的条件可表示为:①Y将①式移项后再两边平方,得x2+(y-2)2=(y+2)2,化简得:因为曲线在x轴的上方,所以y>0,虽然原点O的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程是(x≠0) 师:上述两个例题让学生了解坐标法的解题方法,明确建立适当的坐标系是求解曲线方程的基础;同时,根据曲线上的点所要适合的条件列出等式,是求曲线方程的重要环节,在这里常用到一些基本公式,如

8、两点间距离公式,点到直线的距离公式,直线的斜率公式等,因此先要了解上述知识,必要时作适当复习.练习:已知A、B为两个定点,它们之间的距离为2a(a>0),动点M满足AM与BM垂直,求动点M的轨迹方程.例3.同例题3.略.练习:思考题:课本第37页:练习第3题.本题有多种思路,可让学生先分组讨论,然后每组派代表发言,可以学生点评,教师补充.六、课堂小结:1、求曲线方程的步骤:2、求曲线方程的方法:师:通过本节学习,要求大家初步认识坐标法研究几何问题的知识与观点,进而逐步掌握求曲线的方程的一般步骤和方法以及所应用的数学思想.七、课后作业第37页习题A组2、3、4,B

9、组1、2高中数学选修2-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。