曲线与方程讲义(二)求曲线方程教案

曲线与方程讲义(二)求曲线方程教案

ID:23521451

大小:281.00 KB

页数:6页

时间:2018-11-08

曲线与方程讲义(二)求曲线方程教案_第1页
曲线与方程讲义(二)求曲线方程教案_第2页
曲线与方程讲义(二)求曲线方程教案_第3页
曲线与方程讲义(二)求曲线方程教案_第4页
曲线与方程讲义(二)求曲线方程教案_第5页
资源描述:

《曲线与方程讲义(二)求曲线方程教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、曲线和方程(二)教学目标:(一)知识要求:根据已知条件求平面曲线方程的基本步骤.(二)能力训练要求:1.会由已知条件求一些简单的平面曲线的方程.2.会判断曲线和方程的关系.(三)德育渗透目的:培养学生的数学修养,提高学生的分析问题、解决问题的能力.教学重点求曲线方程的“五步”思路.教学难点依据题目特点,建立恰当的坐标系,考察曲线的点与方程的坐标的对应关系的纯粹性与完备性.教学方法:导学法.启发引导学生利用曲线的方程、方程的曲线理论,借助坐标系,用坐标表示点,把曲线视为点的集合或轨迹,用点(x,y)翻译约束条件,用方程f(x,y)=0表示曲线.教学过程知识回顾:方程的曲线和曲

2、线的方程:⑴曲线上的点的坐标都是方程的解⑵以方程的解为坐标的点都在曲线上;就说这条曲线是这个方程的曲线,这个方程是这条曲线的方程.情境设置:由曲线的方程、方程的直线可知,借助直角坐标,用坐标表示点,把满足某种条件的点的集合或轨迹看成曲线,即用曲线上的点的坐标(x,y)所满足的方程f(x,y)=0表示曲线,那么我们就可通过研究方程的性质,间接地研究曲线的性质.我们把这种借助坐标系研究几何图形的方法叫做坐标法.在教学中,用坐标法研究几何图形的知识已形成了一门学科,它就是解析几何.解析几何是用代数方法研究几何问题的一门数学学科.它主要研究的是:(1)根据已知条件,求出表示平面曲线

3、的方程;(2)通过方程,研究平面曲线的性质.(二)讲授新课:1.例题分析:【例1】设A、B两点的坐标分别为(-1,-1)、(3,7)求线段AB的垂直平分线的方程.如何求曲线的方程?法一、运用现成的结论──直线方程的知识来求.法二:若没有现成的结论怎么办?──需要掌握一般性的方法解:设M(x,y)是线段AB的垂直平分线上任意一点,即点M属于集合P={M

4、

5、MA

6、=

7、MB

8、},由两点之间的距离公式,点M所适合的条件可表示为yB(3,7)化简整理得①M证明方程①是线段AB的垂直平分线的方程.(1)求方程的过程可知,垂直平分线上每一点的坐标都是方程①的解.A(-1,-1)0x(2)

9、设点M1的坐标(x1,y1)是方程①的解,即x1+2y1-7=0,得x1=-2y1+76点M到A、B的距离分别是.即点M1在线段AB的垂直平分线上.由(1)(2)可知方程①是AB的垂直平分线.反思:第一种方法运用现成的结论当然快,但它需要你对研究的曲线要有一定的了解;第二种方法虽然有些走弯路,但这种方法有一般性.求曲线的方程可以这样一般地尝试,注意其中的步骤:求曲线的方程(轨迹方程),一般有下面几个步骤:1.建立适当的坐标系,设曲线上任一点M的坐标;2.写出适合条件P的几何点集:;3.用坐标表示条件,列出方程;4.化简方程为最简形式;5.证明(查漏除杂).例2已知一条直线和

10、它上方的一个点F,点F到的距离是2.一条曲线也在的上方,它上面的每一点到F的距离减去到的距离的差都是2,建立适当的坐标系,求这条曲线的方程.B变式:一个动点P与定点A,B的距离的平方和为122,=10,求动点P的轨迹方程练习1.已知点M与轴的距离和点M与点F(0,4)的距离相等,求点M的轨迹方程.解:设点M的坐标为(x,y)建立坐标系设点的坐标∵点M与轴的距离为,限(找几何条件)6∴=代(把条件坐标化)∴∴化简所求的轨迹方程是课后作业:1、求到直线4x+3y-5=0的距离为1的点的轨迹方程.答案:4x+3y-10=0或4x-3y=0.2.、如图,已知点C的坐标是(2,2),

11、过点C直线CA与x轴交于点A,过点C且与直线CA垂直的直线CB与y轴交于点B,设点M是线段AB的中点,求点M的轨迹方程.课后反思:由例1,例2归纳总结求曲线方程的步骤.一般地,求曲线方程的步骤是:(1)建立恰当条件的坐标系,用M(x,y)表示曲线上任意一点(2)写出适当条件的点的集合P={M

12、P(M)}(即找几何特性满足的关系式)(3)用坐标表示条件P(M),列出方程f(x,y)=0.(即将几何关系式转化为代数方程)(4)化简方程f(x,y)=0.(5)证明化简后的方程的解为坐标的点都是曲线上的点.评注:(1)化简前后方程的解集是相同的,步骤(5)可以省略不写.(2)根据情

13、况,也可省略步骤(2),直接列出曲线方程.曲线和方程(三)教学目标:(一)教学知识点:1.根据条件,求较复杂的曲线方程.2.求曲线的交点.63.曲线的交点与方程组解的关系.(二)能力训练要求:1.进一步提高应用“五步”法求曲线方程的能力.2.会求曲线交点坐标,通过曲线方程讨论曲线性质.(三)德育渗透目的:1.渗透数形结合思想.2.培养学生的辨证思维.教学重点1.求曲线方程的实质就是找曲线上任意一点坐标(x,y)的关系式f(x,y)=0.2.求曲线交点问题转化为方程组的解的问题.教学难点1.寻找“几何关系”.2.转化

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。