The Probability Space of Brownian Motion

The Probability Space of Brownian Motion

ID:40104274

大小:2.15 MB

页数:39页

时间:2019-07-21

The Probability Space of Brownian Motion_第1页
The Probability Space of Brownian Motion_第2页
The Probability Space of Brownian Motion_第3页
The Probability Space of Brownian Motion_第4页
The Probability Space of Brownian Motion_第5页
资源描述:

《The Probability Space of Brownian Motion》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Chapter2TheProbabilitySpaceofBrownianMotion2.1IntroductionAccordingtoEinstein’sdescription,theBrownianmotioncanbedefinedbythefollowingtwoproperties:first,ithascontinuoustrajectories(samplepaths)andsecond,theincrementsofthepathsindisjointtimeintervalsareindependentzeromeanGaussianrandom

2、variableswithvarianceproportionaltothedurationofthetimeinterval(itisassumed,fordefiniteness,thatthepossibletrajectoriesofaBrow-nianparticlestartattheorigin).Thesepropertieshavefar-reachingimplicationsabouttheanalyticpropertiesoftheBrowniantrajectories.Itcanbeshown,forex-ample(seeTheor

3、em2.4.1),thatthesetrajectoriesarenotdifferentiableatanypointwithprobability1[198].Thatis,thevelocityprocessoftheBrownianmotioncan-notbedefinedasareal-valuedfunction,althoughitcanbedefinedasadistribution(generalizedfunction)[152].Langevin’sconstructiondoesnotresolvethisdiffi-culty,becaus

4、eitgivesrisetoavelocityprocessthatisnotdifferentiablesothattheaccelerationprocess,Ξ(t)ineq.(1.24),cannotbedefined.OnemightguessthatinordertoovercomethisdifficultyinLangevin’sequationalldifferentialequationscouldbeconvertedintointegralequationssothattheequa-tionscontainonlywelldefinedvel

5、ocities.Thisapproach,however,failseveninthesimplestdifferentialequationsthatcontaintheprocessΞ(t)(whichinonedimen-Rt+∆tsionisdenotedΞ(t)).Forexample,ifweassumethat∆w(t)≡Ξ(s)ds∼tN(0,∆t)andconstructthesolutionoftheinitialvalueproblemx˙=xΞ(t),x(0)=x0>0(2.1)bytheEulermethodx∆t(t+∆t)−x∆t(

6、t)=x∆t(t)∆w(t),x∆t(0)=x0>0,(2.2)Z.Schuss,TheoryandApplicationsofStochasticProcesses:AnAnalyticalApproach,25AppliedMathematicalSciences170,DOI10.1007/978-1-4419-1605-1_2,©SpringerScience+BusinessMedia,LLC2010262.TheProbabilitySpaceofBrownianMotionthelimitx(t)=lim∆t→0x∆t(t)isnotthefunc

7、tionZtx(t)=x0expΞ(s)ds.0ItisshownbelowthatthesolutionisZt1x(t)=x0expΞ(s)ds−t.20ItisevidentfromthisexamplethatdifferentialequationsthatinvolvetheBrownianmotiondonotobeytherulesofthedifferentialandintegralcalculus.Asimilarphenomenonmanifestsitselfinothernumericalschemes.Con

8、sider,forexa

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。