Chapter 4_Brownian motion.pdf

Chapter 4_Brownian motion.pdf

ID:34816801

大小:112.79 KB

页数:8页

时间:2019-03-11

Chapter 4_Brownian motion.pdf_第1页
Chapter 4_Brownian motion.pdf_第2页
Chapter 4_Brownian motion.pdf_第3页
Chapter 4_Brownian motion.pdf_第4页
Chapter 4_Brownian motion.pdf_第5页
资源描述:

《Chapter 4_Brownian motion.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Chapter4BrownianMotion4.1StochasticProcessesinContinuousTimeFortherestofthiscourse,wewillconcentrateourattentiononstochasticprocesseswhosetimeindexiscontinuous.So(refertosection1.4.5)wewilleithertakeI=[0;T]whereT>0is¯xedorI=R+.The¯rstcaseisusefulformodellingpr

2、ocesseswithina¯xedtimehorizonwhilethesecondismoregeneral.Inthissectionwe'llworkinthesecondcase.Werecallthatastochasticprocessincontinuoustimeisafamilyofrandomvariables(X(t);t¸0)de¯nedonacommonprobabilityspace(•;F;P).A(continuous-time)¯ltrationofFisanincreasing

3、familyofsub-¾-algebras(Ft;t¸0)ofFsothatifs·t;FsµFt.TheprocessX=(X(t);t¸0)issaidtobeadaptedtothe¯ltration(Ft;t¸0)ifeachX(t)isFtmeasurable.Thenatural¯ltrationassociatedtoXisde¯nedbyFX=¾fX(s);0·s·tg,i.e.thesmallestsub-¾-algebratofFwithrespecttowhichallX(s)aremeas

4、urablefor0·s·t.Everystochasticprocessisadaptedtoitsownnatural¯ltration.Themartingaleconceptincontinuoustimeneedsalittlethought.Wecannotgeneralisethemartingalepropertydirectly(whyshouldweworkwithintegers?)butwecaneasilygeneralisetheequivalentproperty(3.2.1).Wet

5、hensaythatanintegrableadaptedprocessisamartingaleifE(X(t)jFs)=X(s);(4.1.1)forall0·s·t<1.Theconceptsofsub-andsuper-martingalearede¯nedsimilarly.ArandomvariableTde¯nedon(•;F;P)andtakingvaluesin[0;1]iscalledastoppingtimewithrespecttothe¯ltration(Ft;t¸0)iftheevent

6、(T·t)2Ft;35forallt¸0,e.g.ifXisanadaptedprocessandA=(a;b)isanintervalinR,thenthe¯rstentrancetimeTAoftheprocessXtothesetAisde¯nedbyTA=infft¸0;X(t)2Ag:Nowthatwe'vegeneralisedkeyconceptsfromdiscretetocontinuoustime,we'llproceedtostudyaveryimportantexample.4.2Brown

7、ianMotionIn1828,thebotanistRobertBrowndiscoveredthatpollengrainsimmersedinwatermoveinanerraticmanner.AtthetimetherewasnogoodphysicalexplanationforthisandthephenomenonwasnamedBrownianmotion"afteritsdiscoverer.Asthenineteenthcenturydeveloped,thekinetictheoryofm

8、atterbecameestablishedasaresultofwhichBrownianmotionwasunderstoodasarisingfromrandombombardmentofpollengrainsbywatermolecules.ConsideraparticleexecutingBrownianmotionandletB(t)deno

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。