欢迎来到天天文库
浏览记录
ID:40552540
大小:151.21 KB
页数:12页
时间:2019-08-04
《08_Brownian_Motion》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、BrownianMotion(2)FinancialEngineeringMartingaleandStoppingTimeHaiLanDept.ofManagementSciencesShanghaiJiaoTongUniversity.November6,2012H.LanFinancialEngineeringBrownianMotion(2)OutlineBrownianMotion(2)H.LanFinancialEngineeringBrownianMotion(2)MarkovianPropertyB(t)isaSBM,thenB(t+s) B(s)
2、isalsoaSBMandindependentoffB(t):0tsg.Proof:B(t+s) B(s)hasthesamenitedimensionaldistributionsasB(t) B(0)=B(t)a.s.anditisalsoa.s.continuous.ThenB(t+s) B(s)isaSBM.TheindependencedirectlycomesfromtheindependentincrementpropertyofSBM.BrownianMotionrestart"atanyxedtimes0.Thisresultcan
3、beextendedtorandomstoppingtime,i.e.B(t+) B()isalsoaSBM.Butnotalwaystrueforanyrandomvariable.ForexampleM(t)=maxfB(s):0stgLet=infft:B(t)=M(1)g,thenX(t)=B(t+) B()isnotaSBM.H.LanFinancialEngineeringBrownianMotion(2)MarkovianPropertyB(t)isaSBM,thenB(t+s) B(s)isalsoaSBMandindependentof
4、fB(t):0tsg.Proof:B(t+s) B(s)hasthesamenitedimensionaldistributionsasB(t) B(0)=B(t)a.s.anditisalsoa.s.continuous.ThenB(t+s) B(s)isaSBM.TheindependencedirectlycomesfromtheindependentincrementpropertyofSBM.BrownianMotionrestart"atanyxedtimes0.Thisresultcanbeextendedtorandomstopping
5、time,i.e.B(t+) B()isalsoaSBM.Butnotalwaystrueforanyrandomvariable.ForexampleM(t)=maxfB(s):0stgLet=infft:B(t)=M(1)g,thenX(t)=B(t+) B()isnotaSBM.H.LanFinancialEngineeringBrownianMotion(2)QuadraticVariationThequadraticvariationofBrownianMotionBtisdenedasXn[B](t):=limjB(tn) B(tn)jn!
6、1ii 1i=1wherethelimitistakenoverallshrinkingpartitionsof[0;t].TheoremQuadraticvariationofaBrownianmotionover[0;t]ist.PProof:LetQn=jB(tn) B(tn)j2.Itiseasytoseethatiii 1XXE(Q)=EjB(tn) B(tn)j2=(tn tn)=t:nii 1ii 1iiByusingthefourthmomentofN(0;2)distributionis34,weobtainthevarianceofQnXX
7、Var(Q)=Var(jB(tn) B(tn)j2=Var(B(tn) B(tn))2nii 1ii 1iiXnn)23maxftn tngt=3(ti ti 1H.LanFinancialEngineeringii 1iBrownianMotion(2)Ifthepartitionrenesaseachintervalisdividedbytwo,P1i=1Var(PQn)<1.Usingmonotoneconvergencetheorem,wendEn(Q EQ)2<1.i=1nnThisimpliesthattheseriesinsidetheexpe
8、ctati
此文档下载收益归作者所有
点击更多查看相关文章~~