欢迎来到天天文库
浏览记录
ID:40020891
大小:69.68 KB
页数:11页
时间:2019-07-17
《07_Brownian_Motion》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、BrownianMotionImportanceofMartingaleinFinanceApplicationsChangeofMeasureonBinomialTreeFinancialEngineeringMartingaleandStoppingTimeHaiLanDept.ofManagementSciencesShanghaiJiaoTongUniversity.October31,2012H.LanFinancialEngineeringBrownianMotionImportanceofM
2、artingaleinFinanceApplicationsChangeofMeasureonBinomialTreeOutlineBrownianMotionImportanceofMartingaleinFinanceApplicationsChangeofMeasureonBinomialTreeH.LanFinancialEngineeringBrownianMotionImportanceofMartingaleinFinanceApplicationsChangeofMeasureonBino
3、mialTreeDefinitionAreal-valuedstochasticprocess{B(t):t>0}iscalleda(linear)Brownianmotionwithstartinx∈Rifthefollowingholds:1B(0)=x2theprocesshasindependentincrements,i.e.foralltimes0≤t1≤t2≤···≤tntheincrementsB(tn)−B(tn−1),B(tn−1)−B(tn−2),...,B(t2)−B(t1)arei
4、ndependentrandomvariables.3forallt≥0andh>0,theincrementsB(t+h)−B(t)arenormallydistributedwithexpectation0andvarianceh.4almostsurely,thefunctiont→B(t)iscontinuous.H.LanFinancialEngineeringBrownianMotionImportanceofMartingaleinFinanceApplicationsChangeofMea
5、sureonBinomialTreey−100102030405060−30−20−10010H.LanFinancialEngineeringxBrownianMotionImportanceofMartingaleinFinanceApplicationsChangeofMeasureonBinomialTreeFactsonBrownianMotion1.Existence.2.IfastochasticprocessXhascontinuouspathsandstationary,independ
6、entincrements,thenXisaBrownianMotion.3.AGaussianProcessX(i.e.allfinitedimensionaldistributionsarenormaldistributions.)havingcontinuouspaths,mean0andcovariancefunctionCov(Xs,Xt)=s∧tisastandardBrownianMotion.H.LanFinancialEngineeringBrownianMotionImportanceo
7、fMartingaleinFinanceApplicationsChangeofMeasureonBinomialTreeScalingInvarianceTheoremSuppose{B(t):t>0}isastandardBrownianmotionandleta>0.Thentheprocess{X(t):t>0}definedbyX(t)=1B(a2t)isalsoastandardBrownianmotion.aProof:Continuityofthepaths,independenceands
8、tationarityoftheincrementsremainunchangedunderthescaling.ItremainstoobservethatX(t)−X(s)=1(B(a2t)−B(a2s))isnormallyadistributedwithexpectation0andvariance(1/a2)(a2t−a2s)=t−s.H.LanFinancialEngineeringBrownianMotionIm
此文档下载收益归作者所有
点击更多查看相关文章~~