07_Brownian_Motion

07_Brownian_Motion

ID:40020891

大小:69.68 KB

页数:11页

时间:2019-07-17

07_Brownian_Motion_第1页
07_Brownian_Motion_第2页
07_Brownian_Motion_第3页
07_Brownian_Motion_第4页
07_Brownian_Motion_第5页
资源描述:

《07_Brownian_Motion》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、BrownianMotionImportanceofMartingaleinFinanceApplicationsChangeofMeasureonBinomialTreeFinancialEngineeringMartingaleandStoppingTimeHaiLanDept.ofManagementSciencesShanghaiJiaoTongUniversity.October31,2012H.LanFinancialEngineeringBrownianMotionImportanceofM

2、artingaleinFinanceApplicationsChangeofMeasureonBinomialTreeOutlineBrownianMotionImportanceofMartingaleinFinanceApplicationsChangeofMeasureonBinomialTreeH.LanFinancialEngineeringBrownianMotionImportanceofMartingaleinFinanceApplicationsChangeofMeasureonBino

3、mialTreeDefinitionAreal-valuedstochasticprocess{B(t):t>0}iscalleda(linear)Brownianmotionwithstartinx∈Rifthefollowingholds:1B(0)=x2theprocesshasindependentincrements,i.e.foralltimes0≤t1≤t2≤···≤tntheincrementsB(tn)−B(tn−1),B(tn−1)−B(tn−2),...,B(t2)−B(t1)arei

4、ndependentrandomvariables.3forallt≥0andh>0,theincrementsB(t+h)−B(t)arenormallydistributedwithexpectation0andvarianceh.4almostsurely,thefunctiont→B(t)iscontinuous.H.LanFinancialEngineeringBrownianMotionImportanceofMartingaleinFinanceApplicationsChangeofMea

5、sureonBinomialTreey−100102030405060−30−20−10010H.LanFinancialEngineeringxBrownianMotionImportanceofMartingaleinFinanceApplicationsChangeofMeasureonBinomialTreeFactsonBrownianMotion1.Existence.2.IfastochasticprocessXhascontinuouspathsandstationary,independ

6、entincrements,thenXisaBrownianMotion.3.AGaussianProcessX(i.e.allfinitedimensionaldistributionsarenormaldistributions.)havingcontinuouspaths,mean0andcovariancefunctionCov(Xs,Xt)=s∧tisastandardBrownianMotion.H.LanFinancialEngineeringBrownianMotionImportanceo

7、fMartingaleinFinanceApplicationsChangeofMeasureonBinomialTreeScalingInvarianceTheoremSuppose{B(t):t>0}isastandardBrownianmotionandleta>0.Thentheprocess{X(t):t>0}definedbyX(t)=1B(a2t)isalsoastandardBrownianmotion.aProof:Continuityofthepaths,independenceands

8、tationarityoftheincrementsremainunchangedunderthescaling.ItremainstoobservethatX(t)−X(s)=1(B(a2t)−B(a2s))isnormallyadistributedwithexpectation0andvariance(1/a2)(a2t−a2s)=t−s.H.LanFinancialEngineeringBrownianMotionIm

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签