乘法原理和加法原理教(学)案

乘法原理和加法原理教(学)案

ID:40095360

大小:345.00 KB

页数:27页

时间:2019-07-20

乘法原理和加法原理教(学)案_第1页
乘法原理和加法原理教(学)案_第2页
乘法原理和加法原理教(学)案_第3页
乘法原理和加法原理教(学)案_第4页
乘法原理和加法原理教(学)案_第5页
资源描述:

《乘法原理和加法原理教(学)案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十一讲乘法原理与加法原理知识提要理解和初步掌握:加法原理、乘法原理、排列和组合的概念及计算方法。加法原理:N=m1+m2+……+mn。乘法原理:N=m1×m2×……×mn。经典例题家桥学校ABCDGEF例1小刚从家到学校要经过一座桥,从家到桥时有3条路可以走,过了桥再到学校时有4条路可以走(如下图)。小刚从家到学校一共可以有多少种不同的走法?分析与解:把从小刚家到学校的路分为两步。第一步从家到桥,第二步从桥到学校。这两步中每一步都不能单独走完从家到学校的路,只有两步合在一起,才能完成。从图中看出从家到学校共有12种不同的走法:ADAEAFAGBDBEBFBGCDCECF

2、CG根据此题,得出如下结论:乘法原理要完成一项任务,由几个步骤实现,第一步有m1种不同的方法;第二步有m2种不同的方法;……第n步有mn种不同的方法;那么要完成任务共有:N=m1×m2×……×mn。5876例2有四张数字卡片,用这四张数字卡片组成三位数,可以组成多少个?分析与解:用卡片组成三位数要分成三步,第一步选取百位上的数字,可以有4种选择;第二步选取十位上的数字,可以有3种选择;第三步选取个位上的数字,可以有2种选择。所以可以组成不同的三位数共有:4×3×2=24(个)例3:由数字1、2、3、4、5、6可以组成多少个没有重复数字的四位奇数?分析与解:要求奇数,所以个

3、位数字只能取1、3、5中的一个,有3种取法;十位数字可以从余下的五个数字中任取一个,有5种不同取法;百位数字还有4种取法;千位数字只有3种取法。由乘法原理,共可组成:3×5×4×3=180(个)没有重复数字的四位奇数。例4:下图为4×4的棋盘,要把A、B、C、D四个不同的棋子放在棋盘的方格中,并使每行每列只能出现一个棋子。问:共有多少种不同的放法?分析与解:四个棋子要一个一个地放,故可看做分四步完成任务,第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同方法;第二步放棋子B,放A棋子的一行和一列都不能放B,还剩下9个方格可以放B,所以B有9种方法;第三步放

4、C,再去掉放B的行和列,还有4个方格可以放C,故C有4种放法;最后放D,再去掉C所在的行和列,只剩下一个方格放D了,D只有一种方法,由乘法原理,共有16×9×4×1=576(种)不同放法。在解题时应注意加法原理和乘法原理的区别,往往是要综合使用的。例5从北京到郑州可以坐飞机,乘火车,还可以乘汽车。一天中有飞机2班,火车有3趟,汽车有5趟。同一天中从北京到郑州乘坐以上三种交通工具,共有几种不同的走法?分析与解:三种交通工具中的任何一种都可以到达目的地,那么每类交通工具中有几中不同的方法。(飞机2班,火车3趟,汽车5趟)因此,要到达目的地应有2+3+5=10不同的方法。根据此

5、题,得出如下结论:加法原理要完成一种任务有几类办法,在第一类办法中有m1中不同方法;在第二类办法中有m2中不同方法;……在第n类办法中有mn中不同方法。在这些不同的方法中,每一种方法都能独立完成任务,那么完成这一任务共有:N=m1+m2+……+mn。例6:如图:从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走。那么,从甲地到丙地共有多少种不同走法?解:从甲地到丙地共有两类不同走法。第一类:由甲地途径乙地到丙地。这时要分二步走。第一步,从甲地到乙地有4种走法;第二步从乙地到丙地有2种走法。据乘法原理,从甲地经乙地到丙地共有:4×2=8种不同走法。

6、第二类:从甲地直接到丙地,有3种走法。由加法原理,从甲地到丙地若有8+3=11种不同的走法。例7:有两个相同的正方体,每个正方体的六个面上标有数字1、2、3、4、5、6,将两个正方体任意放到桌面上,向上一面的两个数字之和为偶数的有多少种情形?解:两个数字之和为偶数,这两个数字的奇偶性必相同,所以分两大类。第一类:两个数字同奇,第一个正方体有3种可能,第二个正方体也有3种可能,由乘法原理,共有3×3=9种不同的情形。第二类:是两个数字同偶。也有9种不同的情况。据加法原理:两个正方体向上一面数字之和为偶数。共有:9+9=18种不同的情况。基本训练1.某校六一班有35人,六二班

7、有40人,六三班有37人。从中选1人去人民大会堂开会,有多少种选法?2.某校六一班第一小队有12人,第二小队有11人,第三小队有13人。从每个小队中各选1人去人民大会堂开会,有多少种选法?3.某人在小学、初中、高中时分别有两个学校可以选择,那么他共有几种不同的由小学读完高中的不同选择方式?4.如图所示,三条平行线上分别有两个点、四个点、三个点,且不在同一直线上的三个点一定不共线,在每条直线上各取一点可以画一个三角形,如三角形BEH,问可以画多少个不同的三角形?5.由数字1、2、3、4、5、6、7、8可以组成多少个(1)三位数?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。