加法原理和乘法原理教案2

加法原理和乘法原理教案2

ID:5744220

大小:189.00 KB

页数:7页

时间:2017-12-23

加法原理和乘法原理教案2_第1页
加法原理和乘法原理教案2_第2页
加法原理和乘法原理教案2_第3页
加法原理和乘法原理教案2_第4页
加法原理和乘法原理教案2_第5页
资源描述:

《加法原理和乘法原理教案2》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、课题: 10.1加法原理和乘法原理(二)教学目的:1.进一步理解两个基本原理.2.会利用两个原理分析和解决一些简单的应用问题教学重点:两个基本原理的进一步理解和体会教学难点:正确判断是分类还是分步,分类计数原理的分类标准及其多样性授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:1分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有种不同的方法2.分步计数原理:做一件事情,完成它

2、需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有种不同的方法3.原理浅释分类计数原理(加法原理)中,“完成一件事,有n类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.分步计数原理(乘法原理)中,“完成一件事,需要分成n个步骤”,是说每个步骤都不足以完成这件事,这

3、些步骤,彼此间也不能有重复和遗漏.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么完成这件事的方法数就可以直接用乘法原理.可以看出“分”是它们共同的特征,但是,分法却大不相同.两个原理的公式是:,这种变形还提醒人们,分类和分步,常是在一定的限制之下人为的,因此,在这里我们大有用武之地:可以根据解题需要灵活而巧妙地分类或分步.强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比

4、.两个基本原理的作用:计算做一件事完成它的所有不同的方法种数两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成”二、讲解范例:例1在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?解:取与取是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,由分步计数原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据分类计数原理共有45+45=90种不同取法.例2在1~20共20个整数中取两个数相加,使其和大于20的不

5、同取法共有多少种?解:分类标准一,固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种.分类标准二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,8,…,2,2,1,1种.由分类计数原理得不同取法共有

6、10+9+9+…+2+2+1+1=100种.例3如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为()A.180B.160C.96D.60①③④②①②③④④③②①图一图二图三若变为图二,图三呢?(240种,5×4×4×4=320种)例4如下图,共有多少个不同的三角形?解:所有不同的三角形可分为三类”第一类:其中有两条边是原五边形的边,这样的三角形共有5个第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个第三类:没有

7、一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个由分类计数原理得,不同的三角形共有5+20+10=35个.例575600有多少个正约数?有多少个奇约数?解:75600的约数就是能整除75600的整数,所以本题就是分别求能整除75600的整数和奇约数的个数.由于75600=24×33×52×7(1)75600的每个约数都可以写成的形式,其中,,,于是,要确定75600的一个约数,可分四步完成,即分别在各自的范围内任取一个值,这样有5种取法,有4种取法,有3种取法,有2种取法,根据分步计数原理得约数的

8、个数为5×4×3×2=120个.(2)奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成的形式,同上奇约数的个数为4×3×2=24个.三、课堂练习:1.用1,2,3,4,5可组成多少个三位数?(各位上的数字允许重复)2.用数字1,2,3可写出多少个小于1000的正整数?(各位上的数字允许重复)3.集合A={a,b,c,d,e},集合

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。