欢迎来到天天文库
浏览记录
ID:39834879
大小:1.58 MB
页数:11页
时间:2019-07-12
《《角平分线(1)》课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.4角平分线(一)还记得角平分线上的点有什么性质吗?你是怎样得到的?用心想一想角平分线上的点到角两边的距离相等.已知:如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.放开手脚做一做证明:∵∠1=∠2,OP=OP,∠PDO=∠PEO=90°,∴△PDO≌△PEO(AAS).∴PD=PE(全等三角形的对应边相等)21EDCPOBA角平分线的性质定理角平分线上的点到这个角的两边的距离相等.21EDCPOBA如果有一个点到角两边的距离相等,那么这个点必在这个角的平分线上.你能写出这个定理的逆命题吗?用心想一想,马到功成这个命题是假命题.
2、角平分线是角内部的一条射线,而角的外部也存在到角两边距离相等的点.角平分线性质定理的逆命题:在一个角的内部且到角的两边距离相等的点,在这个角的角平分线上.这是一个真命题吗?已知:在∠AOB内部有一点P,且PD⊥OA,PE⊥OB,D、E为垂足且PD=PE,求证:点P在∠AOB的角平分线上.用心想一想,马到功成证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在Rt△ODP和Rt△OEP中OP=OP,PD=PE∴Rt△ODP≌Rt△OEP(HL).∴∠1=∠2(全等三角形对应角相等).21EDCPOBA角平分线的判定定理在一个角的内部,且到角两边距离相等的点,在这个角的角平分线
3、上.练一练例1如图,在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求DE的长.解:∵DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,∴AD平分∠BAC(在一个角的内部,到角的两边距离相等的点在这个角的平分线上).又∵∠BAC=60°,∴∠BAD=30°.在Rt△ADE中,∠AED=90°,AD=10,∴DE=AD=×10=5(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).如图,AD、AE分别是△ABC中∠A的内角平分线和外角平分线,它们有什么关系?大胆尝试,练一练!FEDCBA43
4、21解:∵AD平分∠CAB,∴∠1=∠2=∠CAB∵AE平分∠CAF,∴∠3=∠4=∠CAF又∵∠CAB+∠CAF=180°∴∠1+∠3=(∠CAB+∠CAF)=×180°=90°即AD⊥AE.课堂小结,畅谈收获:(一)角平分线的性质定理角平分线上的点到角两边的距离相等.(二)角平分线的判定定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.习题1.91、2、3、4
此文档下载收益归作者所有