欢迎来到天天文库
浏览记录
ID:39794719
大小:1006.00 KB
页数:8页
时间:2019-07-11
《专题04 图形的变换(第03期)-2017年中考数学试题分项版解析汇编(原卷版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一、选择题1.(2017四川省南充市)如图由7个小正方体组合而成的几何体,它的主视图是( )A. B. C. D.[来源:学_科_网Z_X_X_K]二、填空题2.(2017四川省南充市)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③,其中正确结论是(填序号)三、解答题3.(2017四川省广安市)在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共
2、顶点式为相连)(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过反折、平移、旋转后能够重合,均视为一种方案)4.(2017四川省眉山市)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;[来源:Zxxk.Com](2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.5.(2017山东省枣庄市)如图,在平面直角坐标系
3、中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.6.(2017广西四市)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出
4、直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.7.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.[来源:学+科+网Z+X+X+K]8.(2017河北省)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧于点P,Q,且点P,Q在
5、AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=时,求的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.9.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.10.(20
6、17山东省济宁市)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.11.(2017广西四市)如图,已知抛物线与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直
7、接写出a的值、点A的坐标及抛物线的对称轴;[来源:Zxxk.Com](2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,均为定值,并求出该定值.12.(2017四川省南充市)如图1,已知二次函数(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上
8、点E′时(图2),求直线
此文档下载收益归作者所有