欢迎来到天天文库
浏览记录
ID:39790045
大小:129.50 KB
页数:4页
时间:2019-07-11
《数学北师大版七年级下册探索两直线平行的条件 第2课》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、探索直线平行的条件(第2课时)一、学生起点分析:学生的知识技能基础:在第一课时的学习中学生已经初步经历了探索直线平行条件的过程,并得到了“同位角相等,两直线平行”的结论,初步具有了利用角的大小关系来判断直线位置关系的意识,认识了三线八角的基本图形,为本节课的继续探究打下基础,因此本课的设计应充分利用学生已有的认知基础,使其成为上节课探究的延续,较好的完成本单元的学习。学生的活动经验基础:在第一课时的学习中,为学生提供了大量生动有趣的现实情境,通过观察、画图、操作、折纸等活动,认识到了探索直线平行的必要性及基本方法,获得了初步的数学活动经验和体验。同时在活动中也培养了学生
2、良好的情感态度,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力。二、教学任务分析:在第一课时已经得到同位角相等,两直线平行的基础上,本课时主要教学任务是认识内错角、同旁内角,并探索出利用内错角和同旁内角的大小关系来判断两直线平行的有关结论。由于学生对于三线八角的认识还不够深入,对内错角、同旁内角的识别比同位角要略为复杂一些,所以本节课的难点之一就是让学生认识两种角,并能在不同的图形中正确识别。另外,在第一课时中,对于同位角相等,两直线平行的结论只要求学生能正确应用即可,对说理要求不高,但是在本节课中就要有目的的引导学生从直观和推理两方面来探索,既要结合
3、实际图形发现规律,又要尽可能的引导学生采用推理的形式加以说明,把内错角相等、同旁内角互补转化为同位角相等来得出结论,因此本节课的教学目标是:1.会识别由“三线八角”构成的内错角合同旁内角。2.经历探索直线平行条件的过程,掌握利用同位角相等、同旁内角互补判别直线平行的结论,并能解决一些问题。3.经历观察、操作、想象、图利、交流等活动,体会利用操作、归纳获得数学结论的过程,进一步发展空间想象、推理能力和有条理表达的能力。4.使学生在参与探索、交流的数学活动中,进一步体验数学与实际生活的密切联系。一、教学设计分析:第一环节:立足基础,温故知新活动内容:cab1.通过以下问题带
4、领学生在复习“三线八角”基本图形和同位角的基础上,进一步学习内错角和同旁内角。问题1:如图,直线a,b被直线c所截,数一数图中有几个角(不含平角)?问题2:写出图中的所有同位角,并用自己的语言说明什么样的角是同位角?引导学生从角与截线与被截线的位置关系的角度来描述同位角。问题3:它们具备什么关系能够判断直线a∥b?你的依据是什么?anmb34521问题4:图中∠3与∠5,∠4与∠6这样位置关系的角有什么特点?∠3与∠6,∠4与∠5这样位置关系的角呢?说说你的理由。由此引导学生概括得出内错角与同旁内角的概念。2.巩固练习1:课本随堂练习1:观察右图并填空:(1)∠1与是同
5、位角;(2)∠5与是同旁内角;41235678DCBEAF(3)∠2与是内错角。练习2:如图,直线AB,CD被EF所截,构成了八个角,你能找出哪些角是同位角、内错角、同旁内角吗?第二环节:创设情境,提出问题活动内容:1.给出实际问题:小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示)。小明只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?2.画板上下边缘是否平行能利用同位角来判断吗?如果不能,是否可以利用其他角来判断?请你先自主探索,再与同伴交流。第三环节:大胆探究,各抒己见活动
6、内容:依次完成以下几个步骤,引导学生从实践到理论探索直线平行的条件1.课本议一议:(1)内错角满足什么关系时,两直线平行?为什么?(2)同旁内角满足什么关系时,两直线平行?为什么?请你先独立思考,采用你认为适当的方式来说明理由,然后再与同学交流。2.观察课件中的三线八角,内错角的变化和同旁内角的变化,得出结论:内错角相等,两直线平行。同旁内角互补,两直线平行。abc1323.挑战自我:你能结合图形用推理的方式来说明以上两个结论成立的理由吗?如图,直线a,b被直线c所截,当(1)∠1=∠2,(2)∠1+∠3=180°时,说明a∥b的理由。第四环节:及时巩固,深化提高nba
7、lm4321活动内容:1.做一做:三个相同的三角尺拼接成一个图形,请找出图中的一组平行线,并说明你的理由。2.图中各角分别满足下列条件时,你能判断哪两条直线平行吗?1234ABCDEFG(1)∠1=∠4;(2)∠2=∠4;(3)∠1+∠3=180°3.看图填空:(1)如右图,∵∠1=∠2∴∥,∵∠2=∴∥,同位角相等,两直线平行ABCDEF43215∵∠3+∠4=180°∴∥,∴AC∥FG,(2)如右图,∵∠2=,∴DE∥BC∵∠B+=180°,∴DB∥EF∵∠B+∠5=180°∴∥,。
此文档下载收益归作者所有