两个重要极限与无穷小量的比较

两个重要极限与无穷小量的比较

ID:39778668

大小:678.10 KB

页数:24页

时间:2019-07-11

两个重要极限与无穷小量的比较_第1页
两个重要极限与无穷小量的比较_第2页
两个重要极限与无穷小量的比较_第3页
两个重要极限与无穷小量的比较_第4页
两个重要极限与无穷小量的比较_第5页
资源描述:

《两个重要极限与无穷小量的比较》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第六讲两个重要极限 与无穷小量的比较内容提要1.两个重要极限;2.无穷小量的比较。教学要求1.熟练掌握用两个重要极限求极限;2.熟练掌握无穷小的比较、等价无穷小量的性质及一些常见的等价无穷小。一、两个重要极限(x取弧度单位)如图所示,作单位圆则圆心角∠AOB=x,显然有AODAOBSSSDD<

2、cos<

3、比较由无穷小的性质可知,两个无穷小的和、差、积仍为无穷小,但两个无穷小的商会出现不同的情况。如当0®x时,函数x2,xsin都是无穷小。但是0=¥=21=而0sin®x与02®x的“快”、“慢”差不多。(3)2sinxx比02®x“快些”,事实上反之“慢些”02®x比由此可见,无穷小虽然都是以0为极限的变量,但它们趋向0的速度不一样,趋向0的“快”、“慢”程度,我们引入无穷小的“阶”的概念。下面仅给出0xx®时的无穷小比较的定义,对于+®0xx,-®0xx,¥®x,+¥®x-¥®x等情况的无穷小比较的

4、定义可类似。为了反映无穷小定义设0)(lim0=®xxxa0)(lim0=®xxxb0)()(lim0=®xxxxab(1)如果,则称)(xb是比)(xa高阶的无穷小,记为))(()(xoxab=(2)如果¥=®)()(lim0xxxxab,则称)(xb是比)(xa低阶的无穷小。)1,0(¹(3)如果)()(lim0=®Cxxxxab则称)(xb与)(xa是同阶无穷小。(4)如果1)()(lim0=®xxxxab则称)(xb与)(xa为等价无穷小,记为)(~)(xxab例如03lim30=®xxxQ)

5、0(®x)3(3=xox1sinlim0=®xxxQ)0(®x~sinxx1-x与12-x同阶无穷小)1(®x)0(®x可以证明:当0®x时,有下列等价无穷小:x~xsinx~xtanx~ex1-x~x)1ln(+2~2xcos1x-利用等价无穷小可以简化某些极限的运算,有下面定理:定理设当0xx®时,)(~)(xxaa¢,)(~)(xxbb¢且)()(lim0xxxxab¢¢®存在(或¥),)()(lim0xxxxab¢¢=®则)()(lim0xxxxab®证明因)()(lim0xxxxab®

6、)()(lim0xxxxab¢¢=®(证毕))()(xxaa¢)()(xxab¢¢)()(xxbb¢lim0xx=®)()(lim0xxxxaa¢®)()(lim0xxxxab¢¢®)()(lim0xxxxbb¢=®23lim0=®xxx例1求2tan3sinlim0®xxx0=0lim30=®xxlim30-=®xxxx这种解法是错误的!解正确的解法如下.正确的解法如下.cos21lim0=®xxcos2lim320.=®xxxxxcos)cos1(sinlim30-=®xxxxxsintanlim

7、30-®xxxx解注意:无穷小量替换分子或分母,也可替换分用无穷小的等价替换简化极限运算时,可用“-”号连接的各部分不能分别作替换。等价分母子或的因子,而对分子或分母中“+”,小结一、两个重要极限重要极限一:重要极限二:(3)倒数关系二、无穷小的比较

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。