高中数学会考知识点(会考)

高中数学会考知识点(会考)

ID:39728069

大小:2.13 MB

页数:29页

时间:2019-07-10

高中数学会考知识点(会考)_第1页
高中数学会考知识点(会考)_第2页
高中数学会考知识点(会考)_第3页
高中数学会考知识点(会考)_第4页
高中数学会考知识点(会考)_第5页
资源描述:

《高中数学会考知识点(会考)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高中数学会考知识数学学业水平复习提纲第一章集合与简易逻辑1、集合(1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。集合中的元素具有确定性、互异性和无序性;表示一个集合要用{}。(2)、集合的表示法:列举法()、描述法()、图示法();(3)、集合的分类:有限集、无限集和空集(记作,是任何集合的子集,是任何非空集合的真子集);(4)、元素a和集合A之间的关系:a∈A,或aA;(5)、常用数集:自然数集:N;正整数集:N;整数集:Z;整数:Z;有理数集:Q;实数集:R。2、子集(1)、定义:A中的任何元素都属于B,则A叫B的子集;记

2、作:AB,注意:AB时,A有两种情况:A=φ与A≠φ(2)、性质:①、;②、若,则;③、若则A=B;3、真子集(1)、定义:A是B的子集,且B中至少有一个元素不属于A;记作:;A(2)、性质:①、;②、若,则;4、补集①、定义:记作:;BA②、性质:;5、交集与并集(1)、交集:AB性质:①、②、若,则(2)、并集:29性质:①、②、若,则6、一元二次不等式的解法:(二次函数、二次方程、二次不等式三者之间的关系)判别式:△=b2-4acx1x2xyOx1=x2xyOxyO二次函数的图象一元二次方程的根有两相异实数根有两相等实数根没有实数根一元二次不等式

3、的解集“>”取两边R一元二次不等式的解集“<”取中间不等式解集的边界值是相应方程的解含参数的不等式ax+bx+c>0恒成立问题含参不等式ax+bx+c>0的解集是R;其解答分a=0(验证bx+c>0是否恒成立)、a≠0(a<0且△<0)两种情况。7、绝对值不等式的解法:(“>”取两边,“<”取中间)(1)、当时,的解集是,的解集是(2)、当时,,(3)、含两个绝对值的不等式:零点分段讨论法:例:8、简易逻辑:(1)命题:可以判断真假的语句;逻辑联结词:或、且、非;原命题若p则q逆命题若q则p否命题若p则q逆否命题若q则p否逆为互互否互逆互逆互否互为逆否

4、简单命题:不含逻辑联结词的命题;复合命题:由简单命题与逻辑联结词构成的命题;三种形式:p或q、p且q、非p;判断复合命题真假:[1]、思路:①、确定复合命题的结构,29②、判断构成复合命题的简单命题的真假,③、利用真值表判断复合命题的真假;[2]、真值表:p或q,同假为假,否则为真;p且q,同真为真;非p,真假相反。(2)、四种命题:原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q则p;互为逆否的两个命题是等价的。原命题与它的逆否命题是等价命题。(3)、反证法步骤:假设结论不成立→推出矛盾→否定假设。(4)、充分条件与必要条件:若,

5、则p叫q的充分条件;若,则p叫q的必要条件;若,则p叫q的充要条件;第二章函数1、映射:按照某种对应法则f,集合A中的任何一个元素,在B中都有唯一确定的元素和它对应,记作f:A→B,若,且元素a和元素b对应,那么b叫a的象,a叫b的原象。2、函数:(1)、定义:设A,B是非空数集,若按某种确定的对应关系f,对于集合A中的任意一个数x,集合B中都有唯一确定的数f(x)和它对应,就称f:A→B为集合A到集合B的一个函数,记作y=f(x),(2)、函数的三要素:定义域,值域,对应法则;自变量x的取值范围叫函数的定义域,函数值f(x)的范围叫函数的值域,定义域

6、和值域都要用集合或区间表示;(3)、函数的表示法常用:解析法,列表法,图象法(画图象的三个步骤:列表、描点、连线);(4)、区间:满足不等式的实数x的集合叫闭区间,表示为:[a,b]满足不等式的实数x的集合叫开区间,表示为:(a,b)满足不等式或的实数x的集合叫半开半闭区间,分别表示为:[a,b)或(a,b];(5)、求定义域的一般方法:①、整式:全体实数,例一次函数、二次函数的定义域为R;②、分式:分母,0次幂:底数,例:29③、偶次根式:被开方式,例:④、对数:真数,例:(6)、求值域的一般方法:①、图象观察法:②、单调函数:代入求值法:③、二次函

7、数:配方法:,④、“一次”分式:反函数法:⑤、“对称”分式:分离常数法:⑥、换元法:(7)、求f(x)的一般方法:①、待定系数法:一次函数f(x),且满足,求f(x)②、配凑法:求f(x)③、换元法:,求f(x)④、解方程(方程组):定义在(-1,0)∪(0,1)的函数f(x)满足,求f(x)3、函数的单调性:(1)、定义:区间D上任意两个值,若时有,称为D上增函数;若时有,称为D上减函数。(一致为增,不同为减)(2)、区间D叫函数的单调区间,单调区间定义域;(3)、判断单调性的一般步骤:①、设,②、作差,③、变形,④、下结论(4)、复合函数的单调性:

8、内外一致为增,内外不同为减;4、反函数:函数的反函数为;函数和互为反函数;反函数的求法:①、由

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。