数学人教版九年级上册圆周角基本概念及圆周角定理

数学人教版九年级上册圆周角基本概念及圆周角定理

ID:39663341

大小:471.50 KB

页数:7页

时间:2019-07-08

数学人教版九年级上册圆周角基本概念及圆周角定理_第1页
数学人教版九年级上册圆周角基本概念及圆周角定理_第2页
数学人教版九年级上册圆周角基本概念及圆周角定理_第3页
数学人教版九年级上册圆周角基本概念及圆周角定理_第4页
数学人教版九年级上册圆周角基本概念及圆周角定理_第5页
资源描述:

《数学人教版九年级上册圆周角基本概念及圆周角定理》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、圆周角定理的教学设计教学目标(一)知识与技能1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、准确地运用圆周角定理及其推论进行简单的证明计算。(二)过程与方法1、通过观察、比较、分析圆周角与圆心角的关系发展学生合情推理和演绎推理的能力。2、通过观察图形,提高学生的识图的能力3、通过引导学生添加合理的辅助线,培养学生探究问题的兴趣。(三)情感与价值观1、经过探索圆周角定理的过程,发展学生的数学思考能力。2、通过积极引导,帮助学生有意识主动探究,并能在探究中获得成功的体验。教学重点圆周角定理、圆周角定理的推导及运用它们解题.教学难点1.认识圆周角

2、定理需要分三种情况逐一证明的必要性。2.推论的灵活应用以及辅助线的添加教学突破让学生学会分类讨论、转换化归是教学突破的关键教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容,制作圆形纸片教学过程活动1:创设情景,引入概念师:课件(出示圆柱形海洋馆图片)右图是圆柱形海洋馆的俯视图.海洋馆的前侧延伸到海洋里,并用玻璃隔开,人们站在海洋馆内部,透过其中的圆弧形玻璃窗可以观看到窗外的海洋动物.如图是圆柱形的海洋馆横截面的示意图,表示圆弧形玻璃窗.同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,丙、丁分别站在其他靠墙的位置D和E,师:

3、同学甲的视角∠AOB的顶点在圆心处,我们称这样的角为圆心角.同学乙的视角∠ACB、同学丙的视角∠ADB和同学丁的视角∠AEB不同于圆心角,是与圆有关的另一类角,我们称这类角为圆周角.师:提出问题问题1:观察∠ACB、∠ADB和∠AEB的边和顶点与圆的位置有什么共同特点?问题2:∠ACB、∠ADB和∠AEB与∠AOB有什么区别?问题3:∠ACB、∠ADB和∠AEB有哪些共同点?(教师引导学生进行探究,并关注以下问题)1、问题的出示是否引起学生的兴趣2、学生是否理解示意图3、学生是否理解圆周角的定义4、学生是否清楚了要探究的数学问题生:这三个角的共同点有两个:①顶点

4、都在圆周上;②两边都与圆相交.师:评价并鼓励学生的总结给出肯定,我们把顶点在圆上,并且两边都与圆相交的角叫做圆周角.(教师板书圆周角定义,并强调定义的两个要点,学生在学案上写出圆周角的定义.)设计意图:从生活中的实例入手,让学生经历观察、分析,抽象出图形的共同属性,得出圆周角定义,理解圆周角概念的本质.跟踪练习:请同学们根据定义回答下面问题:在下列与圆有关的角中,哪些是圆周角?哪些不是,为什么?(学生思考片刻之后,教师就每个图形分别请一位学生作答.)设计意图:为了使学生更加容易地掌握概念,此处教师并排地呈现正例和反例,可以有利于学生对本质属性与非本质进行比较.活

5、动2:问题探究探究同弧所对圆周角及圆周角与圆心角的关系师:下面我们继续研究海洋馆的问题,设想你是一名游客,甲、乙、丙、丁四位同学的位置供你选择,你认为在哪个位置看到的海洋景象范围更广一些?预设生:(会很肯定的说)当然是同学甲的位置可以看到更广的海洋范围了.师提出:你是如何知道的?预设生1:因为我发现∠AOB比∠ACB、∠ADB和∠AEB都大.预设生2:因为发现在圆内当角的顶点距离弧越近角就越大师提出:如果在乙、丙、丁三位同学的位置中选择,哪个位置看到的海洋范围更广一些?预设生:(看了图形想了想)三个位置看到海洋范围的大小应该是一样的.师提出问题:1、弧AB所对的

6、圆周角的个数有多少个?2、弧AB所对的圆周角的度数是否发生变化?预设生:有无数个,度数相等师:你是怎么知道的?预设生:观察猜到的。师:学习数学需要有观察、猜想但更重要的还要验证。请同学们验证你们的说法,并与同伴交流.师提出问题:弧AB所对的圆周角与其所对的圆心角有什么关系?(学生分组开始动手操作验证:有的借助量角器,用度量的方法进行验证;有的采用折叠重合的方法进行验证……)预设生:(兴奋地惊叫着……)老师,我发现了:同学乙、丙、丁的视角∠ACB、∠ADB和∠AEB相等,同学甲的视角∠AOB比其他同学的视角都大,是它们的2倍!(其他同学也都兴奋得不得了,教室里顿时

7、一片欢腾)设计意图:引导学生经历观察、猜想、操作、分析、验证、交流等基本数学活动,探索圆周角的性质,感知基本几何事实,初步体会两种数量关系:①同弧所对的圆周角和圆心角的关系;②同弧所对的圆周角的关系.师:下面,老师用计算机进一步验证我们刚才所得到的结论:(教师开始在计算机上进行验证.)首先采用《几何画板》的度量功能,量出∠AOB、∠ACB、∠ADB和∠AEB,发现:∠AOB最大,∠ACB=∠ADB=∠AEB,接着,采用计算功能,计算∠ACB和∠AOB的比值,发现:∠ACB:∠AOB=1:2.然后教师分别从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧

8、所对的圆周角与圆心角的关

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。